請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67633完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林國峰 | |
| dc.contributor.author | Peng-An Chen | en |
| dc.contributor.author | 陳鵬安 | zh_TW |
| dc.date.accessioned | 2021-06-17T01:41:17Z | - |
| dc.date.available | 2019-08-01 | |
| dc.date.copyright | 2017-08-01 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-07-27 | |
| dc.identifier.citation | 1. Akiyama, J., Stefan, H.G., 1984. Plunging flow into a reservoir—theory. Journal of Hydraulic Engineering. 110, 484-499.
2. Altinakar, M.S., Graf, W.H., Hopfinger, E.J., 1990. Weakly depositing turbidity current on a small slope. Journal of Hydraulic Research. 28 (1), 55-80. 3. Altinakar, M.S., Graf, W.H., Hopfinger, E.J., 1996. Flow structure in turbidity currents. Journal of Hydraulic Research. 34, 713-718. 4. Annandale, G.W., 2005. Reservoir sedimentation. Elsevier Science, USA. 5. Ashida, K., Egashira, S., 1975. Basic study on turbidity currents. Proceedings of the Japan Society Civil Engineering. 237, 37-50. 6. Auel, C., Kantoush, S.A., Sumi, T., 2016. Positive effects of reservoir sedimentation management on reservoir life–examples from Japan. 84th Annual Meeting of ICOLD, Johannesburg, South Africa. 7. Batuca, D.G., Jordaan, J.M., 2000. Silting and desilting of reservoirs. Balkema, Rotterdam, The Netherlands. 8. Chamoun, S., De Cesare, G., Schleiss, A. J., 2016. Experimental investigation on turbidity current venting under restrained outflow discharges. River Flow Proceedings, Saint Louis, USA. 9. Chen, J., Zhao, K., 1992. Sediment management in Nanqin Reservoir. International Journal of Sediment Research. 7 (3), 71-84. 10. Chen, P.A., Lin, G.F., Lai, J.S., Lee, F.Z., 2016. Estimation of the duration of the turbidity current in a reservoir. 12th International Conference on Hydroscience & Engineering Hydro-Science & Engineering for Environmental Resilience, Tainan, Taiwan. 11. Chen, Y.H., Chang, F.J., 2009. Evolutionary artificial neural networks for hydrological systems forecasting. Journal of Hydrology. 367, 125-137. 12. Cheng, C.T., Feng, Z.K., Niu, W.J., Liao, S.L., 2015. Heuristic methods for reservoir monthly inflow forecasting: A case study of Xinfengjiang Reservoir in Pearl River, China. Water. 7 (8), 4477-4495. 13. Cristianini, N., Shawe-Taylor, J., 2000. An Introduction to Support vector machines and Other Kernel-Based Learning Methods. Cambridge University Press, Cambridge, UK. 14. Deb, K., 2001. Multi-objective Optimization Using Evolutionary Algorithms. Jhon Wiley, USA. 15. Ellison, T.H., Turner, J.S., 1959. Turbulent entrainment in stratified flows. Journal of Fluid Mechanics. 6, 423-448. 16. Fahimi, F., Yaseen, Z.M.,El-shafie, A., 2017. Application of soft computing based hybrid models in hydrological variables modeling: a comprehensive review. Theoretical and Applied Climatology. 128 (3-4), 875-903. 17. Ford, D.E., Johnson, M.C., 1981. Field observations of density currents in impoundments. Proceedings of the Symposium on Surface Water Impoundments. American Society of Civil Engineers. 1239-1248. 18. Forel, F.A., 1885. Les ravins sous-lacustres des fleuves glaciaires. Comptes Rendus de l'Académie des Sciences Paris. 101 (1885), 725-728. 19. Fukuoka, S., Fukushima,Y., Nakamura, K., 1980. Study on the plunge depth interface form of density currents in a two-dimensional reservoir. Proceedings of the Japan Society Civil Engineering. 302, 55-65. 20. Heednacram, A., Samitalampa, T., 2014. Suspended sediment forecast of khlong bang yai phuket. International Journal of Engineering and Technology. 6 (4), 338-345. 21. Jothiprakash, V., Magar, R.B., 2012. Multi-time-step ahead daily and hourly intermittent reservoir inflow prediction by artificial intelligent techniques using lumped and distributed data. Journal of Hydrology. 450-451, 293-307. 22. Kondolf, G.M., Gao, Y.X., Annandale, G.W., Morris, G.L., Jiang, E.H., Zhang, J.H., Cao, Y.T., Carling, P., Fu, K.D., Guo, Q.C., Hotchkiss, R., Peteuil, C., Sumi, T., Wang, H.-W., Wang, Z.M., Wei, Z.L., Wu, B.S., Wu, C.P., Yang, C.T., 2014. Sustainable sediment management in reservoirs and regulated rivers: experiences from five continents. Earth's Future. 2, 256-280. 23. Kuo, J.T., Wang, Y.Y., Lung, W., 2006. A hybrid neural-genetic algorithm for reservoir water quality management. Water Research. 40, 1367-1376. 24. Lee, F.Z., Lai, J.S., Tan, Y.C., Sung, C.C., 2014. Turbid density current venting through reservoir outlets. Journal of Civil Engineering. 18 (2), 694-705. 25. Lee, F.Z.,Lai, J.S., Chen, P.A., Lin, G.F., Lee, H.Y., Wu, C.H., Tan, Y.C., 2017. Investigation on Plunge Point Location and Turbidity Current Movement in the Shihmen Reservoir. 2nd International Workshop on Sediment Bypass Tunnels, Kyoto, Japan. 26. Lee, H.Y., Yu, W.S., 1997. Experimental study of reservoir turbidity current. Journal of Hydraulic Engineering. 123 (6), 520-528. 27. Lin G.F., Chen G.R., Huang P.Y., Chou Y.C., 2009. Support vector machine-based models for hourly reservoir inflow forecasting during typhoon-warning periods. Journal of Hydrology. 372, 17-29. 28. Lin, G.F., Chang, M.J., Huang, Y.C., Ho, J.Y., 2017. Assessment of susceptibility to rainfall-induced landslides using improved self-organizing linear output map, support vector machine, and logistic regression. Engineering Geology. 224, 62-74. 29. Lin, G.F., Chang, M.J., Wu, J.T., 2016. A hybrid statistical downscaling method based on the classification of rainfall patterns. Water Resources Management. 31, 377-401. 30. Lin, G.F., Chou, Y.C., Wu, M.C., 2013. Typhoon flood forecasting using integrated two-stage Support Vector Machine approach. Journal of Hydrology. 486, 334-342. 31. Lin, G.F., Jhong, B.C., Chang, C.C., 2013. Development of an effective data-driven model for hourly typhoon rainfall forecasting. Journal of Hydrology. 495, 52-63. 32. Louati, M.H., Benabdallah, S., Lebdi, F., Milutin, D., 2011. Application of a genetic algorithm for the optimization of a complex reservoir system in Tunisia. Water Resources Management. 25 (10), 2387-2404. 33. ltakura, T., Kishi, T., 1979. Study of the turbidity current in a reservoir. Proceedings of the 16th Symposium, Science of Natural Disasters. 233-234. 34. Morris, G.L., 2015. Management alternatives to combat reservoir sedimentation. First International Workshop on Sediment Bypass Tunnels. 181-193. 35. Morris, G.L., Fan J., 1998. Reservoir sedimentation handbook: design and management of dams, reservoirs and watersheds for sustainable use. McGraw-Hill, New York, USA. 36. Mulder, T., Savoye, B., Syvitski, J.P.M., 1997. Numerical modelling of a mid-sized gravity flow: the 1979 Nice turbidity current (dynamics, processes, sediment budget and seafloor impact). Sedimentology. 44, 305-326. 37. Oehy, C., Schleiss, A.J., 2007. Control of turbidity currents in reservoirs by solid and permeable obstacles. Journal of Hydraulic Engineering. 133 (6), 637-648 38. Rashidi, S., Vafakhah, M., Kakaei Lafdani, E., Javadi, M.R., 2016. Evaluating the support vector machine for suspended sediment load forecasting based on gamma test. Arabian Journal of Geosciences. 39. Reddy, M.J., Kumar, D.N., 2006. Optimal reservoir operation using multi-objective evolutionary algorithm. Water Resources Management. 20 (6), 861-878. 40. Reed, P.M., Minsker, B.S., 2004. Striking the balance: long-term groundwater monitoring design for conflicting objectives. Journal of Water Resources Planning and Management. 130 (2), 140-149. 41. Singh, B., and Shah, C.R., 1971. Plunging Phenomenon of Density Currents in Reservoirs. LaHouille Blanche. 26 (1), 59-64. 42. Su, J.; Wang, X.; Zhao, S.; Chen, B.; Li, C.; Yang, Z., 2015. A structurally simplified hybrid model of genetic algorithm and support vector machine for prediction of chlorophyll a in reservoirs. Water. 7, 1610-1627. 43. Tabatabaei , S.M., Khozeymehnezhad, H., Akbarpuor , A., Varjavand, P., 2017. Investigating Effects of Obstacles’ Arrangement on the Velocity of Density Current’s in Experimental Conditions. International Academic Journal of Science and Engineering. 4 (1), 53-64. 44. Turner, J.S., 1979. Buoyancy Effects in Fluids. Cambridge University Press. Cambridge, UK. 45. Üneş, Ağiralioğlu, 2017. Numerical Investigation of Temporal Variation of Density Flow and Parameters. Journal of Applied Fluid Mechanics. 10 (1), 81-94. 46. Vapnik, V., 1995. The Nature of Statistical Learning Theory. Springer, New York, USA. 47. Wan, X.Y., Wang, G.Q., Yi, P., Bao, W.M., 2010. Similarity-based optimal operation of water and sediment in a sediment-laden reservoir. Water Resources Management. 24 (15), 4381-4402. 48. Wang, Z., Xia, J., Deng, S., Zhang, J., Li, T., 2017. One-dimensional morphodynamic model coupling open-channel flow and turbidity current in reservoir. Journal of Hydrology and Hydromechanics. 65 (1). 49. Yapo, P.O., Gupta, H.V., Sorooshian, S., 1998. Multi-objective global optimization for hydrologic models. Journal of Hydrology. 204 (1-4), 83-97. 50. 廖信華,2013,評估改良式統計降尺度模式應用於日雨量模擬之研究,國立臺灣大學土木工程學碩士論文。 51. 經濟部水利,2011,氣候變遷下水庫排砂對策研究總報告。 52. 經濟部水利署,2014,曾文永久河道放水道改建防淤設施工程射流閘門操作及維護手冊。 53. 張家銓,2009,改良式自組織映射線性輸出模式於水庫入流量預報之研究,國立臺灣大學土木工程學碩士論文。 54. 俞維昇,1991,水庫沉滓運動特性之研究,國立臺灣大學土木工程學博士論文。 55. 吳爵廷,2014,基於雨量型態的統計降尺度方法研究,國立臺灣大學土木工程學碩士論文。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67633 | - |
| dc.description.abstract | 台灣水庫淤積日益嚴重,導致蓄水量逐漸減少。為了使水庫能永續經營,有效率地清淤顯得相當重要。異重流排砂為中大型水庫排除細顆粒泥砂最主要之方法,若能準確地於異重流到達壩前之時機開啟排砂設施,可有效地提高排砂效率。由於排砂設施閘門操作需要一段開啟時間,故異重流到達時間的預報對閘門操作有很大的幫助,但目前鮮少研究對於預報異重流到達時間進行研究。故本研究提出預報異重流到達時間及排砂效率之方法,以作為排砂設施操作之依據。
本研究分為三個階段,第一階段為入流量及入流泥砂濃度預報,結合多目標基因演算與類神經網路方法分別對入流量及入流泥砂濃度進行預報。本研究使用改良式自組織線性輸出映射圖,並將其與倒傳遞類神經網路模式及支援向量機兩種常用之類神經網路比較,以尋找最佳之入流量及入流泥砂濃度預報模式;為了改善長延時預報之表現,提出將前面時刻預報值當作輸入項之模式。接著,於第二階段計算異重流到達時間,本研究提出異重流到達時間模式,並基於前一階段預報之入流泥砂濃度、入流量及水庫水位,預報異重流到達時間。第三階段為出流泥砂濃度預報,此階段的預報方法與入流預報之方法相似,但因為輸入因子僅有歷史觀測之出流泥砂濃度,故使用試誤法當作因子篩選的方法,並且利用預報之出流泥砂濃度推估排砂效率,給予關閉排砂設施重要的依據。 本研究選擇台灣北部石門水庫為研究區域,並蒐集2008年至2016年9場資料完整的颱風事件,將其應用於提出模式之訓練與驗證。結果顯示:所提出之預報模式對入流量、入流泥砂濃度及出流泥砂濃度皆有良好的表現,而異重流到達時間預報與觀測資料有良好的一致性。因此,本研究所提出之方法可有效提高排砂效率並降低水資源之浪費,對於水庫永續經營提供良好的管理工具與方法。 | zh_TW |
| dc.description.abstract | Reservoir sedimentation is a serious problem in Taiwan. It hampers the sustainable use of reservoirs and reduces water resource availability. Various methods are applied for sediment mitigation. However, venting the turbidity currents through outlets is the most efficient way to reduce sedimentation. The accuracy of the forecasted turbidity-current arrival-time is very important for increasing the venting efficiency. However, there are few researchers studying the real-time forecasting of the turbidity-current arrival-time in reservoirs. Therefore, the novel outflow sediment concentration forecasting model and turbidity-current arrival-time model are proposed in this study.
This study consists of three steps. In the first step, to obtain more effective forecasts of hourly inflow discharge and sediment concentration, novel models with better ability are desired. Integrating the multi-objective genetic algorithm (MOGAs) and the artificial neural networks (ANNs), effective hourly inflow discharge and sediment concentration forecasting models are constructed. In this study, compare the self-organizing linear output map (ISOLO) with commonly used ANNs, the back propagation networks (BPN) and the support vector machines (SVM), for finding the optimal hourly inflow discharge and sediment concentration forecasting models. To further improve the long lead time forecasting, forecasted values are added as key input to the proposed forecasting models. In the second step, a turbidity-current arrival-time model (TCATM) is proposed. The forecasted inflow discharge, sediment concentration and water level are used as input to the TCATM to forecast the turbidity-current arrival-time. In the last step, to obtain more effective forecasts of hourly outflow sediment concentration, the similar methods as in the first step are used. However, the trial and error method is used to screening the input factors. To demonstrate the effectiveness of the proposed model, an application to the Shihmen reservoir in northern Taiwan is presented. Nine typhoons from 2008 to 2016 are selected to train and test the proposed model. The results clearly confirm that the proposed forecasting model is recommended as an alternative to the existing models, and the forecasted turbidity-current arrival-time is in good agreement with the observed data. In conclusion, the proposed method can be adapted as a reference to the water quality and sedimentation management of reservoir operation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T01:41:17Z (GMT). No. of bitstreams: 1 ntu-106-R04521317-1.pdf: 6499904 bytes, checksum: d32089d22d00f416e58ae8b8ef52f610 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii Abstract v 目錄 vii 圖目錄 x 表目錄 xiii 第一章 緒論 1 1.1 研究動機及目的 1 1.2 文獻回顧 2 1.3 論文架構 4 第二章 研究區域與資料 5 2.1 研究區域概述 5 2.2 研究資料 5 2.2.1 雨量資料 5 2.2.2 入流資料 6 2.2.3 出流資料 6 第三章 研究方法 11 3.1 多目標基因演算法 11 3.2 倒傳遞類神經網路模式 13 3.3 支援向量機 16 3.4 改良式自組織線性輸出映射圖 21 3.5 網格搜尋法 26 3.6 異重流到達時間模式 27 3.6.1 異重流潛入判斷 27 3.6.2 濁流運移時間 27 3.6.3 異重流運移時間 28 第四章 模式建立 30 4.1 研究流程 30 4.2 入流預報 31 4.3 異重流到達時間預報 34 4.4 出流泥砂濃度預報 34 4.5 交替驗證 35 4.6 評鑑指標 37 第五章 結果與討論 39 5.1 入流預報 39 5.1.1 入流量預報模式比較 39 5.1.2 改善長延時入流量預報結果 41 5.1.3 入流泥砂濃度預報模式比較 47 5.1.4 改善長延時入流泥砂濃度預報結果 49 5.2 異重流到達時間預報 55 5.2.1 水位推估 55 5.2.2 TCATM之參數率定 57 5.2.3 異重流到達時間預報 59 5.3 出流預報 61 5.3.1 出流泥砂濃度預報模式比較 61 5.3.2 改善出流泥砂濃度預報結果 64 5.3.3 排砂效率 70 第六章 結論與建議 72 6.1 結論 72 6.2 建議 73 參考文獻 74 | |
| dc.language.iso | zh-TW | |
| dc.subject | 異重流 | zh_TW |
| dc.subject | 到達時間 | zh_TW |
| dc.subject | 多目標基因演算法 | zh_TW |
| dc.subject | 倒傳遞類神經網路模式 | zh_TW |
| dc.subject | 支援向量機 | zh_TW |
| dc.subject | 改良式自組織線性輸出映射圖 | zh_TW |
| dc.subject | Improved self-organizing linear output map | en |
| dc.subject | Arrival time | en |
| dc.subject | Multi-objective genetic algorithm | en |
| dc.subject | Turbidity current | en |
| dc.subject | Back propagation network | en |
| dc.subject | Support vector machine | en |
| dc.title | 機器學習法於水庫異重流到達時間及排砂效率預報之研究 | zh_TW |
| dc.title | Reservoir turbidity-current arrival-time and venting efficiency forecasting using machine learning | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 賴進松 | |
| dc.contributor.oralexamcommittee | 李方中 | |
| dc.subject.keyword | 異重流,到達時間,多目標基因演算法,倒傳遞類神經網路模式,支援向量機,改良式自組織線性輸出映射圖, | zh_TW |
| dc.subject.keyword | Turbidity current,Arrival time,Multi-objective genetic algorithm,Back propagation network,Support vector machine,Improved self-organizing linear output map, | en |
| dc.relation.page | 79 | |
| dc.identifier.doi | 10.6342/NTU201702086 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-07-28 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 6.35 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
