Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67566
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳中平
dc.contributor.authorSophia Ina Wuen
dc.contributor.author吳伊娜zh_TW
dc.date.accessioned2021-06-17T01:37:58Z-
dc.date.available2017-08-02
dc.date.copyright2017-08-02
dc.date.issued2017
dc.date.submitted2017-07-31
dc.identifier.citation[1] D. A. Pizzagalli, 'Frontocingulate dysfunction in depression: Toward biomarkers of treatment response,' Neuropsychopharmacology, vol. 36, pp. 183-206, 2011.
[2] R. M. Hirschfeld, 'History and evolution of the monoamine hypothesis of depression,' The Journal of Clinical Psychiatry, vol. 61, pp. 4-6, 2000.
[3] J. B. Henriques and R. J. Davidson, 'Left frontal hypoactivation in depression,' Journal of Abnormal Psychology, vol. 100, pp. 535-545, 1991.
[4] World Health Organization (WHO), 'Depression: Fact sheet,' Available: http://www.who.int/mediacentre/factsheets/fs369/en/, 2017.
[5] Ministry of Health and Welfare and National Health Insurance Administration, Available: http://www.nhi.gov.tw/index2015.aspx, 2016.
[6] C. J. L. Murray and A. D. Lopez, 'Alternative projections of mortality and disability by cause 1990–2020: Global Burden of Disease Study,' The Lancet, vol. 349, pp. 1498-1504, 1997.
[7] A. J. Ferrari, A. J. Somerville, A. J. Baxter, R. E. Norman, S. B. Patten, T. Vos, et al., 'Global variation in the prevalence and incidence of major depressive disorder: a systematic review of the epidemiological literature,' Psychological Medicine, vol. 43, pp. 471-481, 2013.
[8] S.-C. Liao, W. J. Chen, M.-B. Lee, F.-W. Lung, T.-J. Lai, C.-Y. Liu, et al., 'Low prevalence of major depressive disorder in Taiwanese adults: possible explanations and implications,' Psychological Medicine, vol. 42, pp. 1227-1237, 2012.
[9] R. C. Kessler, P. Berglund, O. Demler, R. Jin, D. Koretz, K. R. Merikangas, et al., 'The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R),' Journal of the American Medical Association, vol. 289, pp. 3095-3105, 2003.
[10] L. Ghio, S. Gotelli, M. Marcenaro, M. Amore, and W. Natta, 'Duration of untreated illness and outcomes in unipolar depression: A systematic review and meta-analysis,' Journal of Affective Disorders, vol. 152-154, pp. 45-51, 2014.
[11] M. H. Trivedi, A. J. Rush, S. R. Wisniewski, A. A. Nierenberg, D. Warden, L. Ritz, et al., 'Evaluation of outcomes with citalopram for depression using measurement-based care in STAR*D: implications for clinical practice,' The American Journal of Psychiatry, vol. 163, pp. 28-40, 2006.
[12] J. F. Greden, 'Clinical Prevention of Recurrent Depression: The Need for Paradigm Shifts,' Treatment of Recurrent Depression, pp. 143-170, 2008.
[13] F. Hardeveld, J. Spijker, R. D. Graaf, W. A. Nolen, and A. T. F. Beekman, 'Prevalence and predictors of recurrence of major depressive disorder in the adult population,' Acta Psychiatrica Scandinavica, vol. 122, pp. 184-191, 2010.
[14] Ministry of Health and Welfare and National Health Insurance Administration, 'The population of taking antidepressant medication,' 2016.
[15] C.-T. Hsu, '探討經由認知作業程式驅動後的前額葉Theta波預測憂鬱症病患未來之療效以及認知作業程式開發與驗證,' Master Thesis from National Taiwan University, 2017.
[16] M. R. Nuwer, G. Comi, R. Emerson, A. Fuglsang-Frederiksen, J. M. Guérit, H. Hinrichs, et al., 'IFCN standards for digital recording of clinical EEG. The International Federation of Clinical Neurophysiology,' Electroencephalography and Clinical Neurophysiology, vol. 52, pp. 11-14, 1999.
[17] The McGill Physiology Virtual Lab, 'Biomedical Signals Acquisition,' Available: http://www.medicine.mcgill.ca/physio/vlab/biomed_signals/eeg_n.htm, 2017.
[18] D. A. Pizzagalli, T. R. Oakes, and R. J. Davidson, 'Coupling of theta activity and glucose metabolism in the human rostral anterior cingulate cortex: An EEG/PET study of normal and depressed subjects,' Psychophysiology, vol. 40, pp. 939-949, 2003.
[19] J. Fell, P. Klaver, H. Elfadil, C. Schaller, C. E. Elger, and G. Fernández, 'Rhinal–hippocampal theta coherence during declarative memory formation: interaction with gamma synchronization?,' European Journal of Neuroscience, vol. 17, pp. 1082-1088, 2003.
[20] B. Schacka, N. Vathb, H. Petschec, H.-G. Geisslerd, and E. Möller, 'Phase-coupling of theta–gamma EEG rhythms during short-term memory processing,' International Journal of Psychophysiology, vol. 44, pp. 143-163, 2002.
[21] A. L. Brody, M. W. Barsom, R. G. Bota, and S. Saxena, 'Prefrontal-subcortical and limbic circuit mediation of major depressive disorder,' Seminars in Clinical Neuropsychiatry, vol. 6, pp. 102-112, 2001.
[22] W. C. Drevets, 'Neuroimaging studies of mood disorders,' Biological Psychiatry, vol. 48, pp. 813-829, 2000.
[23] R. Cabeza and L. Nyberg, 'Imaging cognition II: An empirical review of 275 PET and fMRI studies,' Journal of Cognitive Neuroscience, vol. 12, pp. 1-47, 2000.
[24] H. O. Veiel, 'A preliminary profile of neuropsychological deficits associated with major depression,' Journal of Clinical and Experimental Neuropsychology, vol. 19, pp. 587-603, 1997.
[25] M. Petrides, 'Functional organization of the human frontal cortex for mnemonic processing. Evidence from neuroimaging studies,' Annals of the New York Academy of Sciences, vol. 769, pp. 85-96, 1995.
[26] C. J. Bench, K. J. Friston, R. G. Brown, R. S. Frackowiak, and R. G. Dolan, 'Regional cerebral blood flow in depression: the relationship with clinical dimensions,' Psychological Medicine, vol. 23, pp. 579-590, 1993.
[27] H. S. Mayberg, P. J. Lewis, W. Regenold, and H. N. Wagner, 'Paralimbic hypoperfusion in unipolar major depression,' Journal of Nuclear Medicine, vol. 35, pp. 929-934, 1994.
[28] W. C. Drevets, 'Functional neuroimaging studies of depression: the anatomy of melancholia,' Annual review of medicine, vol. 49, pp. 341-361, 1998.
[29] R. Coben and J. R. Evans, Neurofeedback and Neuromodulation Techniques and Applications. Academic Press, 2011.
[30] R. J. Davidson, D. Pizzagalli, J. B. Nitschke, and K. Putnam, 'Depression: perspectives from affective neuroscience,' Annual Review of Psychology, vol. 53, pp. 545-574, 2002.
[31] J. F. Thayer and R. D. Lane, 'A model of neurovisceral integration in emotion regulation and dysregulation,' Journal of Affective Disorders, vol. 61, pp. 201-216, 2000.
[32] O. Devinsky, M. J. Morrell, and B. A. Vogt, 'Contributions of anterior cingulate cortex to behaviour,' Brain, vol. 118, pp. 279-306, 1995.
[33] D. A. Pizzagalli, R. D. Pascual-Marqui, J. B. Nitschke, T. R. Oakes, C. L. Larson, H. C. Abercrombie, et al., 'Anterior Cingulate Activity as a Predictor of Degree of Treatment Response in Major Depression: Evidence From Brain Electrical Tomography Analysis,' The American Journal of Psychiatry, vol. 158, pp. 405-415, 2001.
[34] H. Asada, Y. Fukuda, S. Tsunoda, M. Yamaguchic, and M. Tonoike, 'Frontal midline theta rhythms reflect alternative activation of prefrontal cortex and anterior cingulate cortex in humans,' Neuroscience Letters, vol. 274, pp. 29-32, 1999.
[35] M. R. Milad, B. T. Quinn, R. K. Pitman, S. P. Orr, B. Fischl, and S. L. Rauch, 'Thickness of ventromedial prefrontal cortex in humans is correlated with extinction memory,' PNAS, vol. 102, pp. 10706-10711, 2005.
[36] C.-T. Li, J.-C. Hsieh, H.-H. Huang, M.-H. Chen, C.-H. Juan, P.-C. Tu, et al., 'Cognition-Modulated Frontal Activity in Prediction and Augmentation of Antidepressant Efficacy: A Randomized Controlled Pilot Study,' Cerebral Cortex, vol. 26, pp. 202-210, 2014.
[37] V. Knott, C. Mahoney, S. Kennedy, and K. Evans, 'Pre-treatment EEG and it's relationship to depression severity and paroxetine treatment outcome,' Pharmacopsychiatry, vol. 33, pp. 201-205, 2000.
[38] F. Brynie, 'How Anxiety and Depression Begin in a Child's Brain,' 2013.
[39] G. E. Brudera, J. W. Stewarta, C. E. Tenkeb, P. J. McGratha, P. Leiteb, N. Bhattacharyab, et al., 'Electroencephalographic and perceptual asymmetry differences between responders and nonresponders to an SSRI antidepressant,' Biological Psychiatry, vol. 49, pp. 416-425, 2001.
[40] G. E. Brudera, J. P. Sedorukb, J. W. Stewarta, P. J. McGratha, F. M. Quitkina, and C. E. Tenke, 'Electroencephalographic Alpha Measures Predict Therapeutic Response to a Selective Serotonin Reuptake Inhibitor Antidepressant: Pre- and Post-Treatment Findings,' Biological Psychiatry, vol. 63, pp. 1171-1177, 2008.
[41] C.-T. Li, L.-F. Chen, P.-C. Tu, S.-J. Wang, M.-H. Chen, T.-P. Su, et al., 'Impaired Prefronto-Thalamic Functional Connectivity as a Key Feature of Treatment-Resistant Depression: A Combined MEG, PET and rTMS Study,' PLoS ONE, vol. 8, pp. 1-8, 2013.
[42] C.-T. Li, S.-J. Wang, J. Hirvonen, J.-C. Hsieh, Y.-M. Bai, C.-J. Hong, et al., 'Antidepressant mechanism of add-on repetitive transcranial magnetic stimulation in medication-resistant depression using cerebral glucose metabolism,' Journal of Affective Disorders, vol. 127, pp. 219-229, 2010.
[43] M. Holzer and F. Padberg, 'Intermittent theta burst stimulation (iTBS) ameliorates therapy-resistant depression: a case series,' Brain Stimulation, vol. 3, pp. 181-183, 2010.
[44] Editors of Bipolar Network News, 'rTMS Study Identifies Glutamate as a Biomarker for Depression Treatment,' Available: http://bipolarnews.org/?p=3382, 2015.
[45] The Magstim Company, 'Magstim Rapid,' Available: https://www.magstim.com/product/17/magstim-rapid2, 2017.
[46] P. Zimmermann and B. Fimm, 'Test for Attentional Performance (TAP),' Psytest Press, 1997.
[47] B.-K. Min and H.-J. Park, 'Task-related modulation of anterior theta and posterior alpha EEG reflects top-down preparation,' BMC Neuroscience, vol. 11, p. 79, 2010.
[48] Y.-P. Lin, Y.-H. Yang, and T.-P. Jung, 'Fusion of electroencephalographic dynamics and musical contents for estimating emotional responses in music listening,' Frontiers in Neuroscience, vol. 8, pp. 1-14, 2014.
[49] A. Feili, 'What is P-value? – Video Lecture – Made Easy,' Available: http://www.medical-institution.com/what-is-p-value-video-lecture/, 2017.
[50] A. Delorme and S. Makeig, 'EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis,' Journal of Neuroscience Methods, vol. 134, pp. 9-21, 2004.
[51] J. W. Cooley and J. W. Tukey, 'An Algorithm for the Machine Calculation of Complex Fourier Series,' Mathematics of Computation, vol. 19, pp. 297-301, 1965.
[52] A. Hyvärinen, J. Karhunen, and E. Oja, Independent Component Analysis, 2004.
[53] S. G. Mallat, 'A theory for multiresolution signal decomposition: the wavelet representation,' IEEE transactions on pattern analysis and machine intelligence, vol. 11, pp. 674-693, 1989.
[54] I. Daubechies, 'The Wavelet Transform, Time-Frequency Localization and Signal Analysis,' IEEE transactions on information theory, vol. 36, pp. 961-1005, 1990.
[55] C. Chesnutt, 'Feature generation of EEG data using wavelet analysis,' Texas Tech University, 2012.
[56] A. Cohen, I. Daubechies, and J.-C. Feauveau, 'Biorthogonal bases of compactly supported wavelets,' Communications on Pure and Applied Mathematics, vol. 45, pp. 485-560, 1992.
[57] C.-P. Shen, C.-C. Chen, S.-L. Hsieh, W.-H. Chen, J.-M. Chen, C.-M. Chen, et al., 'High-Performance Seizure Detection System Using a Wavelet-Approximate Entropy-fSVM Cascade With Clinical Validation,' Clinical EEG and neuroscience, vol. 44, pp. 247-256, 2013.
[58] J. Jeong, J.-H. Chae, S. Y. Kim, and S.-H. Han, 'Nonlinear dynamic analysis of the EEG in patients with Alzheimer's disease and vascular dementia,' Journal of Clinical Neurophysiology, vol. 18, pp. 58-67, 2001.
[59] S. A. Akar, S. Kara, F. Latifoğlu, and V. Bilgiç, 'Investigation of the noise effect on fractal dimension of EEG in schizophrenia patients using wavelet and SSA-based approaches,' Biomedical Signal Processing and Control, vol. 18, pp. 42-48, 2015.
[60] N. Hazarika, A. C. Tsoi, and A. A. Sergejew, 'Nonlinear Considerations in EEG Signal Classification,' IEEE Transactions on signal processing, vol. 45, pp. 829-836, 1997.
[61] A. Wolf and H. Swinney, 'Determining Lyapunov Exponents From a Time Series,' Physica D: Nonlinear Phenomena, vol. 16, pp. 285-317, 1985.
[62] M. A. Savi, 'Chaos and Order in Biomedical Rhythms,' Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 27, pp. 157-169, 2005.
[63] C. K. Peng and S. V. Buldyrev, 'Long-Range Correlations in Nucleotide Sequences,' Nature, vol. 356, pp. 168-170, 1992.
[64] C. K. Rhea and A. W. Kiefer, Gait Biometrics: Basic Patterns, Role of Neurological Disorders and Effects of Physical Activity, 2014.
[65] J. Theiler, 'Estimating fractal dimension,' Journal of the Optical Society of America A, vol. 7, pp. 1055-1073, 1990.
[66] M. J. Katz, 'Fractals and the analysis of waveforms,' Computers in Biology and Medicine, vol. 18, pp. 145-156, 1988.
[67] T. Higuchi, 'Approach to an irregular time series on the basis of the fractal theory,' Physica D: Nonlinear Phenomena, vol. 31, pp. 277-283, 1988.
[68] P. Grassberger and I. Procaccia, 'Measuring the Strangeness of Strange Attractors,' Physica D: Nonlinear Phenomena, vol. 9, pp. 189-208, 1983.
[69] Z. Gong, 'A Super-High-Efficiency Algorithm for the Calculation of the Correlation Integral ' Journal of Data Analysis and Information Processing, vol. 3, pp. 128-135, 2015.
[70] S. Pincus, 'Approximate entropy as a measure of system complexity,' PNAS, vol. 88, pp. 2297-2301, 1991.
[71] M. Teplan, 'Fundamentals of EEG Measurement,' Measurement Science Review, vol. 2, pp. 1-11, 2002.
[72] H. Adeli, S. Ghosh-Dastidar, and N. Dadmehr, 'A spatio-temporal wavelet-chaos methodology for EEG-based diagnosis of Alzheimer's disease,' Neuroscience Letters, vol. 444, pp. 190-194, 2008.
[73] C. Besthorn, R. Zerfass, C. Geiger-Kabisch, H. Sattel, S. Daniel, U. Schreiter-Gasser, et al., 'Discrimination of Alzheimer's disease and normal aging by EEG data,' Electroencephalography and Clinical Neurophysiology vol. 103, pp. 241-248, 1997.
[74] C. J. Stam, T. Montez, B. F. Jones, S. A. R. B. Rombouts, Y. v. d. Made, Y. A. L. Pijnenburg, et al., 'Disturbed fluctuations of resting state EEG synchronization in Alzheimer's disease,' Clinical Neurophysiology, vol. 116, pp. 708-715, 2008.
[75] R. Hornero, P. Espino, A. Alonso, and M. Lopez, 'Estimating complexity from EEG background activity of epileptic patients,' IEEE Engineering in Medicine and Biology Magazine, vol. 18, pp. 73-79, 1999.
[76] L. D. Iasemidis, J. C. Sackellares, H. P. Zaveri, and W. J. Williams, 'Phase space topography and the Lyapunov exponent of electrocorticograms in partial seizures,' Brain Topography, vol. 2, pp. 187-201, 1990.
[77] J. Jeong, D.-J. Kim, J.-H. Chae, S. Y. Kim, H.-J. Ko, and I.-H. Paik, 'Nonlinear analysis of the EEG of schizophrenics with optimal embedding dimension,' Medical Engineering and Physics, vol. 20, pp. 669-676, 1998.
[78] D. J. Kim, J. Jeong, J. H. Chae, S. Park, S. Yong Kim, H. Jin Go, et al., 'An estimation of the first positive Lyapunov exponent of the EEG in patients with schizophrenia,' Psychiatry Research-Neuroimaging, vol. 98, pp. 177-189, 2000.
[79] A. Kotini and P. Anninos, 'Detection of Non-Linearity in Schizophrenic Patients Using Magnetoencephalography,' Brain Topography, vol. 15, pp. 107-113, 2002.
[80] B. S. Raghavendra, D. N. Dutt, H. N. Halahalli, and J. P. John, 'Complexity analysis of EEG in patients with schizophrenia using fractal dimension,' Physiological Measurement, vol. 30, pp. 795-808, 2009.
[81] M. Sabeti, S. Katebi, and R. Boostani, 'Entropy and complexity measures for EEG signal classification of schizophrenic and control participants,' Artificial Intelligence in Medicine, vol. 47, pp. 263-274, 2009.
[82] O. Faust, P. C. A. Ang, S. D. Puthankattil, and P. Joseph, 'Depression diagnosis support system based on eeg signal entropies,' Journal of Mechanics in Medicine and Biology, vol. 14, p. 1450035, 2014.
[83] J.-L. Nandrino, L. Pezard, J. Martinerie, F. E. Massioui, B. Renault, R. Jouvent, et al., 'Decrease of complexity in EEG as a symptom of depression,' NeuroReport, vol. 5, pp. 528-530, 1994.
[84] S. A. Akar, S. Kara, S. Agambayev, and V. Bilgic, 'Nonlinear analysis of EEG in major depression with fractal dimensions,' Conference of the IEEE Engineering in Medicine and Biology Society, pp. 7410-7413, 2015.
[85] B. Hosseinifard, M. H. Moradi, and R. Rostami, 'Classifying depression patients and normal subjects using machine learning techniques and nonlinear features from EEG signal,' Computer Methods and Programs in Biomedicine, vol. 109, pp. 339-345, 2013.
[86] N. Marwan, M. C. Romano, M. Thiel, and J. Kurths, 'Recurrence plots for the analysis of complex systems,' Physics Reports, vol. 438, pp. 237-329, 2007.
[87] C. L. Nikias and J. M. Mendel, 'Signal processing with higher-order spectra,' IEEE Signal Processing Magazine, vol. 10, pp. 10-37, 1993.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67566-
dc.description.abstract重度憂鬱症(Major depressive disorder)是一個慢性、退化性且患者容易出現高度失能風險的疾病。為了讓臨床醫師能夠在治療前藉由客觀的方式決定該給予患者何種合適的治療方法,在本篇論文內提出並建立一個能夠在治療前預測患者治療效果之即時自動化分析系統。在此系統中,我們將應用時頻分析中的小波轉換及非線性分析的方法:最大李亞普諾夫指數 (Largest Lyapunov Exponent)、消除趨勢波動分析法 (Detrended Fluctuation Analysis)、分形維數 (Fractal Dimension)、關聯維數 (Correlation Dimension)及近似熵 (Approximate Entropy)來擷取腦波圖(Electroencephalography)訊號的特徵值,藉以區分治療之療效。為了驗證這些非線性分析之方法結合小波轉換能否作為區分憂鬱症治療之療效,本研究利用上述方法來擷取出特徵向量,再運用無母數分析、相關性分析及混淆矩陣來評估分類表現及設定區分是否有療效的最佳閥值。另外,我們將此系統分析自動化以及可以即時判別療效(40秒之內,加快45倍),並預期能協助醫生快速的做治療前之療效預測。zh_TW
dc.description.abstractMajor depressive disorder (MDD) is increasingly to be recognized as a chronic, deteriorating illness with the high risk to obtain comorbidity. In order to provide clinicians with a subjective approach to decide appropriate treatments for MDD patients, a real time automatic detection system for predicting the antidepressant responses is of important. Wavelet Transform and nonlinear methods - Largest Lyapunov Exponent (LLE), Detrended Fluctuation Analysis (DFA), Fractal Dimension (FD), Correlation Dimension (CD) and Approximate Entropy (ApEn) were applied to extract the features from electroencephalography (EEG) activities in antidepressant responses. Non-parametric analysis, correlation analysis and confusion matrix were employed to evaluate the performance of classifying and decide the optimal threshold for discrimination. Moreover, the system is built to aid clinicians’ in prediction of the antidepressant responses before treatments by an automatic real time detection system and the results can be viewed within 40 seconds (45X).en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:37:58Z (GMT). No. of bitstreams: 1
ntu-106-R04945012-1.pdf: 2530052 bytes, checksum: 251e74fb53cc1ab3c693605991013232 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES viii
LIST OF TABLES xi
Chapter 1 Introduction 1
1.1 Major Depressive Disorder 1
1.2 Thesis Motivation 5
1.3 Thesis Organization 8
Chapter 2 Background 11
2.1 Electroencephalogram 11
2.2 Antidepressant Effects and Pre-Treatment Neural Activity 13
2.3 Treatments for MDD 16
2.4 Computerized rACC-Engaging Cognitive Task 18
2.5 EEG Data Acquisition 19
2.6 Psychiatric Evaluations 20
2.7 Clinical Subjects and Clinical Design 21
2.8 Statistics for EEG Signals 22
2.9 Neuroscan 4.3 Software 23
2.10 EEGLAB Open Source 25
Chapter 3 Methodology 27
3.1 Frequency Analysis - Fast Fourier Transform 28
3.2 Preprocessing 29
3.2.1 Independent Component Analysis 29
3.2.2 Filtering 30
3.3 Time-Frequency Analysis – Wavelet Transform 31
3.4 Features Extraction 33
3.4.1 Largest Lyapunov Exponent 34
3.4.2 Detrended Fluctuation Analysis 36
3.4.3 Fractal Dimension 38
3.4.4 Correlation Dimension 41
3.4.5 Approximate Entropy 43
3.5 Spec and Working Environment 44
Chapter 4 Experimental Results 45
4.1 Non-Parametric Analysis 46
4.2 Correlation Analysis with Response Rate 53
4.3 Classification Performances 56
Chapter 5 Discussion 61
5.1 Nonlinear Features 62
5.2 Relation with DLPFC 63
5.3 Nonlinear Methods in Different Diseases 64
Chapter 6 Conclusions 65
Chapter 7 Future Work 67
REFERENCE 69
dc.language.isoen
dc.subject腦波zh_TW
dc.subject分形維數zh_TW
dc.subject消除趨勢波動分析法zh_TW
dc.subject小波轉換最大李亞普諾夫指數zh_TW
dc.subject重度憂鬱症zh_TW
dc.subjectLargest Lyapunov Exponenten
dc.subjectElectroencephalographyen
dc.subjectMajor depressive disorderen
dc.subjectFractal Dimensionen
dc.subjectWavelet Transformen
dc.subjectDetrended Fluctuation Analysisen
dc.title臨床憂鬱症之腦波即時分析及輔助預測療效之系統zh_TW
dc.titleReal Time Computer Aided Detection System for the Prediction of Clinical Antidepressant Responsesen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.coadvisor李正達
dc.contributor.oralexamcommittee莊曜宇,沈家平
dc.subject.keyword重度憂鬱症,腦波,小波轉換最大李亞普諾夫指數,消除趨勢波動分析法,分形維數,zh_TW
dc.subject.keywordMajor depressive disorder,Electroencephalography,Wavelet Transform,Largest Lyapunov Exponent,Detrended Fluctuation Analysis,Fractal Dimension,en
dc.relation.page77
dc.identifier.doi10.6342/NTU201702285
dc.rights.note有償授權
dc.date.accepted2017-07-31
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
2.47 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved