請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67550完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林菀俞(Wan-Yu Lin) | |
| dc.contributor.author | Hsuan-Wei Chen | en |
| dc.contributor.author | 陳宣維 | zh_TW |
| dc.date.accessioned | 2021-06-17T01:37:12Z | - |
| dc.date.available | 2023-09-01 | |
| dc.date.copyright | 2020-09-02 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-15 | |
| dc.identifier.citation | Aschard, H. (2016). A perspective on interaction effects in genetic association studies. Genet Epidemiol, 40(8), 678-688. doi:10.1002/gepi.21989 Barbeira, A. N., Dickinson, S. P., Bonazzola, R., Zheng, J., Wheeler, H. E., Torres, J. M., . . . Im, H. K. (2018). Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics. Nat Commun, 9(1), 1825. doi:10.1038/s41467-018-03621-1 Biondi, B. (2010). Thyroid and obesity: an intriguing relationship. J Clin Endocrinol Metab, 95(8), 3614-3617. doi:10.1210/jc.2010-1245 Cadoret, R. J., Cain, C. A., Crowe, R. R. (1983). Evidence for gene-environment interaction in the development of adolescent antisocial behavior. Behav Genet, 13(3), 301-310. doi:10.1007/BF01071875 Chen, C. H., Yang, J. H., Chiang, C. W. K., Hsiung, C. N., Wu, P. E., Chang, L. C., . . . Shen, C. Y. (2016). Population structure of Han Chinese in the modern Taiwanese population based on 10,000 participants in the Taiwan Biobank project. Hum Mol Genet, 25(24), 5321-5331. doi:10.1093/hmg/ddw346 Cleary, M. P., Grossmann, M. E. (2009). Minireview: Obesity and breast cancer: the estrogen connection. Endocrinology, 150(6), 2537-2542. doi:10.1210/en.2009-0070 Engelman, C. D., Baurley, J. W., Chiu, Y. F., Joubert, B. R., Lewinger, J. P., Maenner, M. J., . . . Gauderman, W. J. (2009). Detecting gene-environment interactions in genome-wide association data. Genet Epidemiol, 33 Suppl 1, S68-73. doi:10.1002/gepi.20475 Fawcett, K. A., Barroso, I. (2010). The genetics of obesity: FTO leads the way. Trends Genet, 26(6), 266-274. doi:10.1016/j.tig.2010.02.006 Gamazon, E. R., Wheeler, H. E., Shah, K. P., Mozaffari, S. V., Aquino-Michaels, K., Carroll, R. J., . . . Im, H. K. (2015). A gene-based association method for mapping traits using reference transcriptome data. Nat Genet, 47(9), 1091-1098. doi:10.1038/ng.3367 Hastie, H. Z. a. T. (2005). Regularization and variable selection via the elastic net. [http://www.jstor.com/stable/3647580]. Journal of the Royal Statistical Society. Series B (Statistical Methodology), 67(2), 301-320. Houmard, J. A., Tanner, C. J., Slentz, C. A., Duscha, B. D., McCartney, J. S., Kraus, W. E. (2004). Effect of the volume and intensity of exercise training on insulin sensitivity. J Appl Physiol (1985), 96(1), 101-106. doi:10.1152/japplphysiol.00707.2003 Hunter, D. J. (2005). Gene-environment interactions in human diseases. Nat Rev Genet, 6(4), 287-298. doi:10.1038/nrg1578 Jiao, S., Hsu, L., Bezieau, S., Brenner, H., Chan, A. T., Chang-Claude, J., . . . Peters, U. (2013). SBERIA: set-based gene-environment interaction test for rare and common variants in complex diseases. Genet Epidemiol, 37(5), 452-464. doi:10.1002/gepi.21735 Kariz, S., Mankoc, S., Petrovic, D. (2015). Association of thioredoxin reductase 2 (TXNRD2) gene polymorphisms with myocardial infarction in Slovene patients with type 2 diabetes mellitus. Diabetes Res Clin Pract, 108(2), 323-328. doi:10.1016/j.diabres.2015.01.038 Kennard, A. E. H. R. W. (1970). Ridge Regression: Biased Estimation for Nonorthogonal Problems. [https://www.jstor.org/stable/1267351]. Technometrics, 12(1), 55-67. Kohrt, W. M., Obert, K. A., Holloszy, J. O. (1992). Exercise training improves fat distribution patterns in 60- to 70-year-old men and women. J Gerontol, 47(4), M99-105. doi:10.1093/geronj/47.4.m99 Lin, W. Y., Huang, C. C., Liu, Y. L., Tsai, S. J., Kuo, P. H. (2018). Genome-Wide Gene-Environment Interaction Analysis Using Set-Based Association Tests. Front Genet, 9, 715. doi:10.3389/fgene.2018.00715 Lin, W. Y., Huang, C. C., Liu, Y. L., Tsai, S. J., Kuo, P. H. (2019). Polygenic approaches to detect gene-environment interactions when external information is unavailable. Brief Bioinform, 20(6), 2236-2252. doi:10.1093/bib/bby086 Lin, W. Y., Lin, Y. S., Chan, C. C., Liu, Y. L., Tsai, S. J., Kuo, P. H. (2020). Using Genetic Risk Score Approaches to Infer Whether an Environmental Factor Attenuates or Exacerbates the Adverse Influence of a Candidate Gene. Front Genet, 11, 331. doi:10.3389/fgene.2020.00331 Lin, X., Lee, S., Wu, M. C., Wang, C., Chen, H., Li, Z., Lin, X. (2016). Test for rare variants by environment interactions in sequencing association studies. Biometrics, 72(1), 156-164. doi:10.1111/biom.12368 McTiernan, A., Sorensen, B., Irwin, M. L., Morgan, A., Yasui, Y., Rudolph, R. E., . . . Potter, J. D. (2007). Exercise effect on weight and body fat in men and women. Obesity (Silver Spring), 15(6), 1496-1512. doi:10.1038/oby.2007.178 Miscio, G., Guastamacchia, G., Brunani, A., Priano, L., Baudo, S., Mauro, A. (2005). Obesity and peripheral neuropathy risk: a dangerous liaison. J Peripher Nerv Syst, 10(4), 354-358. doi:10.1111/j.1085-9489.2005.00047.x Sandholm, N., Forsblom, C., Makinen, V. P., McKnight, A. J., Osterholm, A. M., He, B., . . . FinnDiane Study, G. (2014). Genome-wide association study of urinary albumin excretion rate in patients with type 1 diabetes. Diabetologia, 57(6), 1143-1153. doi:10.1007/s00125-014-3202-3 Schmidt, M. I., Duncan, B. B., Canani, L. H., Karohl, C., Chambless, L. (1992). Association of waist-hip ratio with diabetes mellitus. Strength and possible modifiers. Diabetes Care, 15(7), 912-914. doi:10.2337/diacare.15.7.912 Tibshirani, R. (1996). Regression Shrinkage and Selection via the Lasso. [http://www.jstor.com/stable/2346178]. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267-288. Wellcome Trust Case Control, C. (2007). Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature, 447(7145), 661-678. doi:10.1038/nature05911 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67550 | - |
| dc.description.abstract | 基因-環境的交互作用(G×E)已經被發現對許多人體表型 (phenotypes) 與疾病具有影響。於全基因組關聯分析(Genome-wide association study,GWAS)中,由於多重檢定校正之懲罰(p值 < 5 x 〖10〗^(-8)),G×E 常難以被檢測出來。本研究發展新方法,避免多重檢定校正之嚴苛懲罰,推論環境因素是否會減弱或加劇候選基因的不利影響。我們先以 PrediXcan 的方法得到「基因校正表現」(genetically regulated expression,GReX) 與「轉錄風險分數」(transcriptome risk score,TRS),再總和所有相關表型的TRS × E的標準分數(Z-score)平方值,並使用「重採樣」(resampling) 檢測TRS與E的交互作用是否顯著,以及推論環境因素會減弱或加劇候選基因的影響。 我們應用此方法於臺灣人體生物資料庫中25,460位個案,分析於肥胖有顯著影響的FTO基因(Fat mass and obesity-associated protein,Chromosome 16: 53,737,875-54,155,853)。從事規律運動與否則當作環境因子E (Environmental factor)。我們結合所有與肥胖有關的表型:「腰圍」(waist circumference)、「臀圍」(hip circumference)、「體脂肪率」(Body Fat Percentage) 以及「身體質量指數」(Body Mass Index)。以本論文之方法,於數個人體組織中確實能夠觀測到規律運動會減弱FTO基因的不利影響。 我們觀察到在不同組織下的FTO基因與規律運動的交互作用,能被顯著察覺者包括甲狀腺 (Thyroid) (p值 = 0.00074)、乳腺 (Breast Mammary) (p值 = 0.00072)、脛神經 (Nerve Tibial) (p值 = 0.0014)。甲狀腺分泌多寡與肥胖有關,有趣的是我們於此組織中觀察到FTO基因與規律運動的交互作用。本研究的方法能推論環境因素會減弱亦或是加劇候選基因的不利影響。 | zh_TW |
| dc.description.abstract | Gene-environment interactions (G×E) have been found to influence many human phenotypes and diseases. In genome-wide association studies (GWAS), G×E are usually difficult to detect due to the penalty of multiple testing correction. To address this issue, we here develop a new method to infer whether an environmental factor can attenuate or exacerbate the adverse effects of candidate genes while bypassing the harsh penalty of multiple testing. We first used PrediXcan to obtain the “genetically regulated expression” (GReX) and “transcriptome risk score” (TRS). Then, we calculated the sum of squared Z scores of TRS×E from all relevant phenotypes, and used resampling to detect whether the interaction between TRS and E is significant, and inferred whether environmental factors can attenuate or exacerbate the influence of a candidate gene. We applied our method to 25,460 subjects in the Taiwan Biobank. We analyzed the FTO gene (Fat mass and obesity-associated protein, Chromosome 16: 53,737,875-54,155,853 in GRCh37) that is related to obesity. Performing regular exercise or not was served as an environmental factor (E). We combined several obesity-related phenotypes, including waist circumference, hip circumference, body fat percentage and body mass index. According to our proposed method, several tissues suggest that performing regular exercise can attenuate the adverse impact of the FTO gene on obesity. We observed significant interactions between the FTO gene and regular exercise in different tissues, including thyroid (p-value = 0.00074), breast mammary (p-value = 0.00072), and tibial nerve (p-value = 0.0014). The amount of thyroid secretion is associated with obesity, and it is interesting that we detected FTO-by-exercise in this tissue. The method described in this study can infer whether an environmental factor attenuates or exacerbates the adverse influences of a candidate gene. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T01:37:12Z (GMT). No. of bitstreams: 1 U0001-1508202016484500.pdf: 1039293 bytes, checksum: 57bf4e5bb7f666a7624c73d22b6f2608 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員會審定書……………………………………………………………………i 誌謝…………………………………………………………………………ii 中文摘要…………………………………………………………………iii 英文摘要…………………………………………………………………iv 目錄……………………………………………………………………vi 表目錄…………………………………………………………………viii 圖目錄…………………………………………………………………ix 第一章:前言……………………………………………………………1 第二章:文獻回顧………………………………………………………3 2.1 單一標識基因分析法…………………………………………3 2.2 十閾值邊際基因風險分數法…………………………………4 2.3 貝氏因子適性結合法…………………………………………5 2.4 交互作用序列核關聯法………………………………………6 2.5 集合基礎基因環境交互作用法………………………………7 2.6 以正規化迴歸偵測交互作用…………………………………8 第三章:方法…………………………………………………………………………10 3.1 PrediXcan…………………………………………………………10 3.2 找出候選基因……………………………………………………11 3.3 藉由「轉錄風險分數」觀察交互作用…………………………11 3.4 結合多個相關表型並使用「重採樣」…………………………12 第四章:臺灣人體生物資料庫分析……………………………………13 4.1臺灣人體生物資料庫…………………………………………13 4.2資料品質管制…………………………………………………13 4.3 表型、基因與變數……………………………………………14 4.4 資料分析…………………………………………………15 4.5 方法分析結果(一):肥胖………………………………………16 4.6 方法分析結果(二):糖尿病……………………………………17 第五章:模擬……………………………………………………………18 第六章:結論……………………………………………………………19 參考文獻…………………………………………………………………27 | |
| dc.language.iso | zh-TW | |
| dc.subject | 基因-環境交互作用 | zh_TW |
| dc.subject | 轉錄風險分數 | zh_TW |
| dc.subject | 標準分數 | zh_TW |
| dc.subject | 臺灣人體生物資料庫 | zh_TW |
| dc.subject | 肥胖 | zh_TW |
| dc.subject | 糖尿病 | zh_TW |
| dc.subject | z-score | en |
| dc.subject | Gene-environment interaction | en |
| dc.subject | diabetes | en |
| dc.subject | obesity | en |
| dc.subject | transcriptome risk score | en |
| dc.subject | Taiwan Biobank | en |
| dc.title | 以預測轉錄體來推論環境因子會減弱或加劇候選基因之不利影響 | zh_TW |
| dc.title | Using predicted transcriptome to infer whether an environmental factor attenuates or exacerbates the adverse influence of a candidate gene | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李文宗(WEN-CHUNG LEE),陳建勳(Chien-Hsiun Chen),蔡慧如(Hui-Ju Tsai) | |
| dc.subject.keyword | 基因-環境交互作用,轉錄風險分數,標準分數,臺灣人體生物資料庫,肥胖,糖尿病, | zh_TW |
| dc.subject.keyword | Gene-environment interaction,transcriptome risk score,z-score,Taiwan Biobank,obesity,diabetes, | en |
| dc.relation.page | 28 | |
| dc.identifier.doi | 10.6342/NTU202003524 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-17 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 流行病學與預防醫學研究所 | zh_TW |
| 顯示於系所單位: | 流行病學與預防醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1508202016484500.pdf 未授權公開取用 | 1.01 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
