請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67531完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李明學 | |
| dc.contributor.author | Shao-Wei Lan | en |
| dc.contributor.author | 藍紹瑋 | zh_TW |
| dc.date.accessioned | 2021-06-17T01:36:20Z | - |
| dc.date.available | 2027-08-01 | |
| dc.date.copyright | 2017-09-08 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-01 | |
| dc.identifier.citation | 1. Siegel, R.L., K.D. Miller, and A. Jemal, Cancer Statistics, 2017. CA Cancer J Clin, 2017. 67(1): p. 7-30.
2. Ito, K., Prostate cancer in Asian men. Nat Rev Urol, 2014. 11(4): p. 197-212. 3. Montironi, R., et al., Mechanisms of disease: high-grade prostatic intraepithelial neoplasia and other proposed preneoplastic lesions in the prostate. Nat Clin Pract Urol, 2007. 4(6): p. 321-32. 4. Hughes, C., et al., Molecular pathology of prostate cancer. J Clin Pathol, 2005. 58(7): p. 673-84. 5. De Marzo, A.M., et al., Inflammation in prostate carcinogenesis. Nat Rev Cancer, 2007. 7(4): p. 256-69. 6. De Marzo, A.M., et al., Proliferative inflammatory atrophy of the prostate: implications for prostatic carcinogenesis. Am J Pathol, 1999. 155(6): p. 1985-92. 7. Ruska, K.M., J. Sauvageot, and J.I. Epstein, Histology and cellular kinetics of prostatic atrophy. Am J Surg Pathol, 1998. 22(9): p. 1073-7. 8. Iemelynova, A.A., et al., Correlation between histological type and immunohistochemical profile of prostate cancer and gleason scale gradation. Exp Oncol, 2009. 31(4): p. 246-9. 9. Wang, W., A. Bergh, and J.E. Damber, Increased expression of CCAAT/enhancer-binding protein beta in proliferative inflammatory atrophy of the prostate: relation with the expression of COX-2, the androgen receptor, and presence of focal chronic inflammation. Prostate, 2007. 67(11): p. 1238-46. 10. Simmons, D.L., R.M. Botting, and T. Hla, Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition. Pharmacol Rev, 2004. 56(3): p. 387-437. 11. Hata, A.N. and R.M. Breyer, Pharmacology and signaling of prostaglandin receptors: multiple roles in inflammation and immune modulation. Pharmacol Ther, 2004. 103(2): p. 147-66. 12. Smith, W.L. and I. Song, The enzymology of prostaglandin endoperoxide H synthases-1 and -2. Prostaglandins Other Lipid Mediat, 2002. 68-69: p. 115-28. 13. Regan, J.W., EP2 and EP4 prostanoid receptor signaling. Life Sci, 2003. 74(2-3): p. 143-53. 14. Watabe, A., et al., Cloning and expression of cDNA for a mouse EP1 subtype of prostaglandin E receptor. J Biol Chem, 1993. 268(27): p. 20175-8. 15. Ashton, A.W. and J.A. Ware, Thromboxane A2 receptor signaling inhibits vascular endothelial growth factor-induced endothelial cell differentiation and migration. Circ Res, 2004. 95(4): p. 372-9. 16. Bos, C.L., et al., Prostanoids and prostanoid receptors in signal transduction. Int J Biochem Cell Biol, 2004. 36(7): p. 1187-205. 17. Hao, C.M. and M.D. Breyer, Physiological regulation of prostaglandins in the kidney. Annu Rev Physiol, 2008. 70: p. 357-77. 18. Nasrallah, R., R. Hassouneh, and R.L. Hebert, Chronic kidney disease: targeting prostaglandin E2 receptors. Am J Physiol Renal Physiol, 2014. 307(3): p. F243-50. 19. Peskar, B.M., Role of cyclooxygenase isoforms in gastric mucosal defence. J Physiol Paris, 2001. 95(1-6): p. 3-9. 20. Dubois, R.N., et al., Cyclooxygenase in biology and disease. FASEB J, 1998. 12(12): p. 1063-73. 21. Amano, H., et al., Host prostaglandin E(2)-EP3 signaling regulates tumor-associated angiogenesis and tumor growth. J Exp Med, 2003. 197(2): p. 221-32. 22. Ansari, K.M., J.E. Rundhaug, and S.M. Fischer, Multiple signaling pathways are responsible for prostaglandin E2-induced murine keratinocyte proliferation. Mol Cancer Res, 2008. 6(6): p. 1003-16. 23. Gupta, S., et al., Over-expression of cyclooxygenase-2 in human prostate adenocarcinoma. Prostate, 2000. 42(1): p. 73-8. 24. Ceylan, Y., et al., Predictive value of cyclooxygenase-2 over expression for identifying prostate cancer from benign prostatic hyperplasia in prostate biopsy specimens. Minerva Urol Nefrol, 2016. 68(3): p. 255-62. 25. Jafarian, A.H., et al., The role of COX-2 and Ki-67 over-expression in the prediction of pathologic response of rectal cancer to neoadjuvant chemoradiation therapy. Indian J Cancer, 2016. 53(4): p. 548-551. 26. Zhou, T.J., et al., Downregulation of mitochondrial cyclooxygenase-2 inhibits the stemness of nasopharyngeal carcinoma by decreasing the activity of dynamin-related protein 1. Theranostics, 2017. 7(5): p. 1389-1406. 27. Kurumbail, R.G., et al., Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. Nature, 1996. 384(6610): p. 644-8. 28. Dannhardt, G. and W. Kiefer, Cyclooxygenase inhibitors--current status and future prospects. Eur J Med Chem, 2001. 36(2): p. 109-26. 29. Charlier, C. and C. Michaux, Dual inhibition of cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) as a new strategy to provide safer non-steroidal anti-inflammatory drugs. Eur J Med Chem, 2003. 38(7-8): p. 645-59. 30. Derry, S. and Y.K. Loke, Risk of gastrointestinal haemorrhage with long term use of aspirin: meta-analysis. BMJ, 2000. 321(7270): p. 1183-7. 31. Huang, E.S., et al., Long-term use of aspirin and the risk of gastrointestinal bleeding. Am J Med, 2011. 124(5): p. 426-33. 32. Gupta, R.A. and R.N. Dubois, Colorectal cancer prevention and treatment by inhibition of cyclooxygenase-2. Nat Rev Cancer, 2001. 1(1): p. 11-21. 33. Platz, E.A., et al., Nonsteroidal anti-inflammatory drugs and risk of prostate cancer in the Baltimore Longitudinal Study of Aging. Cancer Epidemiol Biomarkers Prev, 2005. 14(2): p. 390-6. 34. Guadagni, F., et al., Non-steroidal anti-inflammatory drugs in cancer prevention and therapy. Anticancer Res, 2007. 27(5A): p. 3147-62. 35. Chang, S.H., et al., Role of prostaglandin E2-dependent angiogenic switch in cyclooxygenase 2-induced breast cancer progression. Proc Natl Acad Sci U S A, 2004. 101(2): p. 591-6. 36. Grosch, S., et al., Cyclooxygenase-2 (COX-2)-independent anticarcinogenic effects of selective COX-2 inhibitors. J Natl Cancer Inst, 2006. 98(11): p. 736-47. 37. Collaborators, G.B.D.R.F., Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet, 2016. 388(10053): p. 1659-1724. 38. Walther, A., et al., Genetic prognostic and predictive markers in colorectal cancer. Nat Rev Cancer, 2009. 9(7): p. 489-99. 39. Fearon, E.R. and B. Vogelstein, A genetic model for colorectal tumorigenesis. Cell, 1990. 61(5): p. 759-67. 40. Thorstensen, L., et al., Genetic and epigenetic changes of components affecting the WNT pathway in colorectal carcinomas stratified by microsatellite instability. Neoplasia, 2005. 7(2): p. 99-108. 41. Diehl, J.A., Cycling to cancer with cyclin D1. Cancer Biol Ther, 2002. 1(3): p. 226-31. 42. Lewis, B.C., et al., Identification of putative c-Myc-responsive genes: characterization of rcl, a novel growth-related gene. Mol Cell Biol, 1997. 17(9): p. 4967-78. 43. Narayan, S. and D. Roy, Role of APC and DNA mismatch repair genes in the development of colorectal cancers. Mol Cancer, 2003. 2: p. 41. 44. Phipps, A.I., et al., KRAS-mutation status in relation to colorectal cancer survival: the joint impact of correlated tumour markers. Br J Cancer, 2013. 108(8): p. 1757-64. 45. Prior, I.A., P.D. Lewis, and C. Mattos, A comprehensive survey of Ras mutations in cancer. Cancer Res, 2012. 72(10): p. 2457-67. 46. Meyerhardt, J.A. and R.J. Mayer, Systemic therapy for colorectal cancer. N Engl J Med, 2005. 352(5): p. 476-87. 47. Cremolini, C., et al., FOLFOXIRI plus bevacizumab versus FOLFIRI plus bevacizumab as first-line treatment of patients with metastatic colorectal cancer: updated overall survival and molecular subgroup analyses of the open-label, phase 3 TRIBE study. Lancet Oncol, 2015. 16(13): p. 1306-15. 48. Van Cutsem, E., et al., Fluorouracil, leucovorin, and irinotecan plus cetuximab treatment and RAS mutations in colorectal cancer. J Clin Oncol, 2015. 33(7): p. 692-700. 49. Peeters, M., et al., Analysis of KRAS/NRAS Mutations in a Phase III Study of Panitumumab with FOLFIRI Compared with FOLFIRI Alone as Second-line Treatment for Metastatic Colorectal Cancer. Clin Cancer Res, 2015. 21(24): p. 5469-79. 50. Bertotti, A., et al., A molecularly annotated platform of patient-derived xenografts ('xenopatients') identifies HER2 as an effective therapeutic target in cetuximab-resistant colorectal cancer. Cancer Discov, 2011. 1(6): p. 508-23. 51. Ferguson, K.M., Active and inactive conformations of the epidermal growth factor receptor. Biochem Soc Trans, 2004. 32(Pt 5): p. 742-5. 52. Higashiyama, S., et al., Structure of heparin-binding EGF-like growth factor. Multiple forms, primary structure, and glycosylation of the mature protein. J Biol Chem, 1992. 267(9): p. 6205-12. 53. Shoyab, M., et al., Amphiregulin: a bifunctional growth-modulating glycoprotein produced by the phorbol 12-myristate 13-acetate-treated human breast adenocarcinoma cell line MCF-7. Proc Natl Acad Sci U S A, 1988. 85(17): p. 6528-32. 54. Strachan, L., et al., Cloning and biological activity of epigen, a novel member of the epidermal growth factor superfamily. J Biol Chem, 2001. 276(21): p. 18265-71. 55. Toyoda, H., et al., Epiregulin. A novel epidermal growth factor with mitogenic activity for rat primary hepatocytes. J Biol Chem, 1995. 270(13): p. 7495-500. 56. Klein, P., et al., A structure-based model for ligand binding and dimerization of EGF receptors. Proc Natl Acad Sci U S A, 2004. 101(4): p. 929-34. 57. McCune, B.K. and H.S. Earp, The epidermal growth factor receptor tyrosine kinase in liver epithelial cells. The effect of ligand-dependent changes in cellular location. J Biol Chem, 1989. 264(26): p. 15501-7. 58. Blaikie, P., et al., A region in Shc distinct from the SH2 domain can bind tyrosine-phosphorylated growth factor receptors. J Biol Chem, 1994. 269(51): p. 32031-4. 59. Oda, K., et al., A comprehensive pathway map of epidermal growth factor receptor signaling. Mol Syst Biol, 2005. 1: p. 2005 0010. 60. Bowman, T., et al., STATs in oncogenesis. Oncogene, 2000. 19(21): p. 2474-88. 61. Hennessy, B.T., et al., Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov, 2005. 4(12): p. 988-1004. 62. Nishinaka, T. and C. Yabe-Nishimura, EGF receptor-ERK pathway is the major signaling pathway that mediates upregulation of aldose reductase expression under oxidative stress. Free Radic Biol Med, 2001. 31(2): p. 205-16. 63. Oliva, J.L., E.M. Griner, and M.G. Kazanietz, PKC isozymes and diacylglycerol-regulated proteins as effectors of growth factor receptors. Growth Factors, 2005. 23(4): p. 245-52. 64. Sebolt-Leopold, J.S. and R. Herrera, Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat Rev Cancer, 2004. 4(12): p. 937-47. 65. Wendel, H.G., et al., Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature, 2004. 428(6980): p. 332-7. 66. Xu, Y., et al., Receptor-type protein-tyrosine phosphatase-kappa regulates epidermal growth factor receptor function. J Biol Chem, 2005. 280(52): p. 42694-700. 67. Li, M.Y., et al., Protein tyrosine phosphatase PTPN3 inhibits lung cancer cell proliferation and migration by promoting EGFR endocytic degradation. Oncogene, 2015. 34(29): p. 3791-803. 68. Alwan, H.A., E.J. van Zoelen, and J.E. van Leeuwen, Ligand-induced lysosomal epidermal growth factor receptor (EGFR) degradation is preceded by proteasome-dependent EGFR de-ubiquitination. J Biol Chem, 2003. 278(37): p. 35781-90. 69. Zhou, L. and H. Yang, The von Hippel-Lindau tumor suppressor protein promotes c-Cbl-independent poly-ubiquitylation and degradation of the activated EGFR. PLoS One, 2011. 6(9): p. e23936. 70. Ohsaki, Y., et al., Epidermal growth factor receptor expression correlates with poor prognosis in non-small cell lung cancer patients with p53 overexpression. Oncol Rep, 2000. 7(3): p. 603-7. 71. Inamura, K., et al., Is the epidermal growth factor receptor status in lung cancers reflected in clinicopathologic features? Arch Pathol Lab Med, 2010. 134(1): p. 66-72. 72. Sainsbury, J.R., et al., Epidermal-growth-factor receptor status as predictor of early recurrence of and death from breast cancer. Lancet, 1987. 1(8547): p. 1398-402. 73. Salomon, D.S., et al., Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol, 1995. 19(3): p. 183-232. 74. Spano, J.P., et al., Impact of EGFR expression on colorectal cancer patient prognosis and survival. Ann Oncol, 2005. 16(1): p. 102-8. 75. Chang, S.S. and J. Califano, Current status of biomarkers in head and neck cancer. J Surg Oncol, 2008. 97(8): p. 640-3. 76. Dacic, S., EGFR assays in lung cancer. Adv Anat Pathol, 2008. 15(4): p. 241-7. 77. Spano, J.P., et al., Epidermal growth factor receptor signaling in colorectal cancer: preclinical data and therapeutic perspectives. Ann Oncol, 2005. 16(2): p. 189-94. 78. Socinski, M.A., The emerging role of biomarkers in advanced non-small-cell lung cancer. Clin Lung Cancer, 2010. 11(3): p. 149-59. 79. Teng, Y.H., et al., Mutations in the epidermal growth factor receptor (EGFR) gene in triple negative breast cancer: possible implications for targeted therapy. Breast Cancer Res, 2011. 13(2): p. R35. 80. Loeffler-Ragg, J., et al., Low incidence of mutations in EGFR kinase domain in Caucasian patients with head and neck squamous cell carcinoma. Eur J Cancer, 2006. 42(1): p. 109-11. 81. Lv, N., et al., Epidermal growth factor receptor in breast carcinoma: association between gene copy number and mutations. Diagn Pathol, 2011. 6: p. 118. 82. Barber, T.D., et al., Somatic mutations of EGFR in colorectal cancers and glioblastomas. N Engl J Med, 2004. 351(27): p. 2883. 83. Lurje, G. and H.J. Lenz, EGFR signaling and drug discovery. Oncology, 2009. 77(6): p. 400-10. 84. Jonker, D.J., et al., Cetuximab for the treatment of colorectal cancer. N Engl J Med, 2007. 357(20): p. 2040-8. 85. Hocking, C.M. and T.J. Price, Panitumumab in the management of patients with KRAS wild-type metastatic colorectal cancer. Therap Adv Gastroenterol, 2014. 7(1): p. 20-37. 86. Mason, C.S., et al., Serine and tyrosine phosphorylations cooperate in Raf-1, but not B-Raf activation. EMBO J, 1999. 18(8): p. 2137-48. 87. Jun, J.E., I. Rubio, and J.P. Roose, Regulation of ras exchange factors and cellular localization of ras activation by lipid messengers in T cells. Front Immunol, 2013. 4: p. 239. 88. O'Byrne, K.J., et al., Molecular biomarkers in non-small-cell lung cancer: a retrospective analysis of data from the phase 3 FLEX study. Lancet Oncol, 2011. 12(8): p. 795-805. 89. Ryan, D.P., T.S. Hong, and N. Bardeesy, Pancreatic adenocarcinoma. N Engl J Med, 2014. 371(22): p. 2140-1. 90. Neumann, J., et al., Frequency and type of KRAS mutations in routine diagnostic analysis of metastatic colorectal cancer. Pathol Res Pract, 2009. 205(12): p. 858-62. 91. You, C., et al., Deregulation of the miR-16-KRAS axis promotes colorectal cancer. Sci Rep, 2016. 6: p. 37459. 92. Padavano, J., et al., Mutant K-RAS Promotes Invasion and Metastasis in Pancreatic Cancer Through GTPase Signaling Pathways. Cancer Growth Metastasis, 2015. 8(Suppl 1): p. 95-113. 93. Deng, M., et al., miR-216b suppresses tumor growth and invasion by targeting KRAS in nasopharyngeal carcinoma. J Cell Sci, 2011. 124(Pt 17): p. 2997-3005. 94. Lievre, A., et al., KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res, 2006. 66(8): p. 3992-5. 95. Amado, R.G., et al., Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol, 2008. 26(10): p. 1626-34. 96. Bokemeyer, C., et al., Fluorouracil, leucovorin, and oxaliplatin with and without cetuximab in the first-line treatment of metastatic colorectal cancer. J Clin Oncol, 2009. 27(5): p. 663-71. 97. Douillard, J.Y., et al., Randomized, phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: the PRIME study. J Clin Oncol, 2010. 28(31): p. 4697-705. 98. Karapetis, C.S., et al., K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med, 2008. 359(17): p. 1757-65. 99. Taveras, A.G., et al., Ras oncoprotein inhibitors: the discovery of potent, ras nucleotide exchange inhibitors and the structural determination of a drug-protein complex. Bioorg Med Chem, 1997. 5(1): p. 125-33. 100. Karaguni, I.M., et al., The new sulindac derivative IND 12 reverses Ras-induced cell transformation. Cancer Res, 2002. 62(6): p. 1718-23. 101. Maurer, T., et al., Small-molecule ligands bind to a distinct pocket in Ras and inhibit SOS-mediated nucleotide exchange activity. Proc Natl Acad Sci U S A, 2012. 109(14): p. 5299-304. 102. Brunner, T.B., et al., Farnesyltransferase inhibitors: an overview of the results of preclinical and clinical investigations. Cancer Res, 2003. 63(18): p. 5656-68. 103. Crul, M., et al., Ras biochemistry and farnesyl transferase inhibitors: a literature survey. Anticancer Drugs, 2001. 12(3): p. 163-84. 104. Massacesi, C., et al., PI3K inhibitors as new cancer therapeutics: implications for clinical trial design. Onco Targets Ther, 2016. 9: p. 203-10. 105. Bollag, G., et al., Vemurafenib: the first drug approved for BRAF-mutant cancer. Nat Rev Drug Discov, 2012. 11(11): p. 873-86. 106. Prahallad, A., et al., Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature, 2012. 483(7387): p. 100-3. 107. Corcoran, R.B., et al., EGFR-mediated re-activation of MAPK signaling contributes to insensitivity of BRAF mutant colorectal cancers to RAF inhibition with vemurafenib. Cancer Discov, 2012. 2(3): p. 227-35. 108. Shi, Y.E., et al., Identification and characterization of a novel matrix-degrading protease from hormone-dependent human breast cancer cells. Cancer Res, 1993. 53(6): p. 1409-15. 109. Lee, M.S., et al., Autoactivation of matriptase in vitro: requirement for biomembrane and LDL receptor domain. Am J Physiol Cell Physiol, 2007. 293(1): p. C95-105. 110. Cho, E.G., et al., N-terminal processing is essential for release of epithin, a mouse type II membrane serine protease. J Biol Chem, 2001. 276(48): p. 44581-9. 111. Ko, C.J., et al., Androgen-Induced TMPRSS2 Activates Matriptase and Promotes Extracellular Matrix Degradation, Prostate Cancer Cell Invasion, Tumor Growth, and Metastasis. Cancer Res, 2015. 75(14): p. 2949-60. 112. List, K., T.H. Bugge, and R. Szabo, Matriptase: potent proteolysis on the cell surface. Mol Med, 2006. 12(1-3): p. 1-7. 113. Lee, M.S., et al., Simultaneous activation and hepatocyte growth factor activator inhibitor 1-mediated inhibition of matriptase induced at activation foci in human mammary epithelial cells. Am J Physiol Cell Physiol, 2005. 288(4): p. C932-41. 114. Benaud, C., et al., Sphingosine 1-phosphate, present in serum-derived lipoproteins, activates matriptase. J Biol Chem, 2002. 277(12): p. 10539-46. 115. Kiyomiya, K., et al., Matriptase activation and shedding with HAI-1 is induced by steroid sex hormones in human prostate cancer cells, but not in breast cancer cells. Am J Physiol Cell Physiol, 2006. 291(1): p. C40-9. 116. Wu, S.R., et al., Matriptase is involved in ErbB-2-induced prostate cancer cell invasion. Am J Pathol, 2010. 177(6): p. 3145-58. 117. Lee, S.L., et al., Matriptase/epithin participates in mammary epithelial cell growth and morphogenesis through HGF activation. Mech Dev, 2010. 127(1-2): p. 82-95. 118. Bocheva, G., et al., Role of matriptase and proteinase-activated receptor-2 in nonmelanoma skin cancer. J Invest Dermatol, 2009. 129(7): p. 1816-23. 119. Lee, S.L., R.B. Dickson, and C.Y. Lin, Activation of hepatocyte growth factor and urokinase/plasminogen activator by matriptase, an epithelial membrane serine protease. J Biol Chem, 2000. 275(47): p. 36720-5. 120. Takeuchi, T., et al., Cellular localization of membrane-type serine protease 1 and identification of protease-activated receptor-2 and single-chain urokinase-type plasminogen activator as substrates. J Biol Chem, 2000. 275(34): p. 26333-42. 121. Tsai, C.H., et al., HAI-2 suppresses the invasive growth and metastasis of prostate cancer through regulation of matriptase. Oncogene, 2014. 33(38): p. 4643-52. 122. Zoratti, G.L., et al., Targeting matriptase in breast cancer abrogates tumour progression via impairment of stromal-epithelial growth factor signalling. Nat Commun, 2015. 6: p. 6776. 123. Sales, K.U., et al., Non-hematopoietic PAR-2 is essential for matriptase-driven pre-malignant progression and potentiation of ras-mediated squamous cell carcinogenesis. Oncogene, 2015. 34(3): p. 346-56. 124. Satomi, S., et al., A role for membrane-type serine protease (MT-SP1) in intestinal epithelial turnover. Biochem Biophys Res Commun, 2001. 287(4): p. 995-1002. 125. List, K., et al., Deregulated matriptase causes ras-independent multistage carcinogenesis and promotes ras-mediated malignant transformation. Genes Dev, 2005. 19(16): p. 1934-50. 126. Ko, C.J., et al., Inhibition of cyclooxygenase-2-mediated matriptase activation contributes to the suppression of prostate cancer cell motility and metastasis. Oncogene, 2017. 127. Lee, J.W., et al., Increased expression of matriptase is associated with histopathologic grades of cervical neoplasia. Hum Pathol, 2005. 36(6): p. 626-33. 128. Tanimoto, H., et al., Transmembrane serine protease TADG-15 (ST14/Matriptase/MT-SP1): expression and prognostic value in ovarian cancer. Br J Cancer, 2005. 92(2): p. 278-83. 129. Kang, J.Y., et al., Tissue microarray analysis of hepatocyte growth factor/Met pathway components reveals a role for Met, matriptase, and hepatocyte growth factor activator inhibitor 1 in the progression of node-negative breast cancer. Cancer Res, 2003. 63(5): p. 1101-5. 130. Vogel, L.K., et al., The ratio of Matriptase/HAI-1 mRNA is higher in colorectal cancer adenomas and carcinomas than corresponding tissue from control individuals. BMC Cancer, 2006. 6: p. 176. 131. Igawa, T., et al., Establishment and characterization of androgen-independent human prostate cancer LNCaP cell model. Prostate, 2002. 50(4): p. 222-35. 132. Morikawa, K., et al., Influence of organ environment on the growth, selection, and metastasis of human colon carcinoma cells in nude mice. Cancer Res, 1988. 48(23): p. 6863-71. 133. De Marzo, A.M., et al., Inflammation in prostate carcinogenesis. Nature reviews. Cancer, 2007. 7(4): p. 256-69. 134. Cheng, T.S., et al., Curcumin-targeting pericellular serine protease matriptase role in suppression of prostate cancer cell invasion, tumor growth, and metastasis. Cancer Prev Res, 2013. 6(5): p. 495-505. 135. Greenhough, A., et al., The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis, 2009. 30(3): p. 377-86. 136. Wang, X. and R.D. Klein, Prostaglandin E2 induces vascular endothelial growth factor secretion in prostate cancer cells through EP2 receptor-mediated cAMP pathway. Molecular carcinogenesis, 2007. 46(11): p. 912-23. 137. Doger, F.K., et al., Does the EGFR and VEGF expression predict the prognosis in colon cancer? Eur Surg Res, 2006. 38(6): p. 540-4. 138. Herszenyi, L., et al., Impact of proteolytic enzymes in colorectal cancer development and progression. World J Gastroenterol, 2014. 20(37): p. 13246-57. 139. Bergum, C., et al., Strong expression association between matriptase and its substrate prostasin in breast cancer. J Cell Physiol, 2012. 227(4): p. 1604-9. 140. Zenonos, K. and K. Kyprianou, RAS signaling pathways, mutations and their role in colorectal cancer. World J Gastrointest Oncol, 2013. 5(5): p. 97-101. 141. Li, Z., et al., PGE2 promotes renal carcinoma cell invasion through activated RalA. Oncogene, 2013. 32(11): p. 1408-15. 142. Ruan, D. and S.P. So, Prostaglandin E2 produced by inducible COX-2 and mPGES-1 promoting cancer cell proliferation in vitro and in vivo. Life Sci, 2014. 116(1): p. 43-50. 143. Buchanan, F.G., et al., Prostaglandin E2 regulates cell migration via the intracellular activation of the epidermal growth factor receptor. J Biol Chem, 2003. 278(37): p. 35451-7. 144. Li, S., et al., Effects of ectopic HER-2/neu gene expression on the COX-2/PGE2/P450arom signaling pathway in endometrial carcinoma cells: HER-2/neu gene expression in endometrial carcinoma cells. J Exp Clin Cancer Res, 2013. 32: p. 11. 145. Narumiya, S., Y. Sugimoto, and F. Ushikubi, Prostanoid receptors: structures, properties, and functions. Physiol Rev, 1999. 79(4): p. 1193-226. 146. O'Callaghan, G., et al., Targeting the EP1 receptor reduces Fas ligand expression and increases the antitumor immune response in an in vivo model of colon cancer. Int J Cancer, 2013. 133(4): p. 825-34. 147. Sung, Y.M., G. He, and S.M. Fischer, Lack of expression of the EP2 but not EP3 receptor for prostaglandin E2 results in suppression of skin tumor development. Cancer Res, 2005. 65(20): p. 9304-11. 148. Taniguchi, T., et al., Human EP3(I) prostanoid receptor induces VEGF and VEGF receptor-1 mRNA expression. Biochem Biophys Res Commun, 2008. 377(4): p. 1173-8. 149. Mutoh, M., et al., Involvement of prostaglandin E receptor subtype EP(4) in colon carcinogenesis. Cancer Res, 2002. 62(1): p. 28-32. 150. Han, C. and T. Wu, Cyclooxygenase-2-derived prostaglandin E2 promotes human cholangiocarcinoma cell growth and invasion through EP1 receptor-mediated activation of the epidermal growth factor receptor and Akt. J Biol Chem, 2005. 280(25): p. 24053-63. 151. Hirata, T. and S. Narumiya, Prostanoid receptors. Chem Rev, 2011. 111(10): p. 6209-30. 152. Donnini, S., et al., EP2 prostanoid receptor promotes squamous cell carcinoma growth through epidermal growth factor receptor transactivation and iNOS and ERK1/2 pathways. FASEB J, 2007. 21(10): p. 2418-30. 153. Ruder, E.H., et al., Non-steroidal anti-inflammatory drugs and colorectal cancer risk in a large, prospective cohort. Am J Gastroenterol, 2011. 106(7): p. 1340-50. 154. Kulp, S.K., et al., 3-phosphoinositide-dependent protein kinase-1/Akt signaling represents a major cyclooxygenase-2-independent target for celecoxib in prostate cancer cells. Cancer Res, 2004. 64(4): p. 1444-51. 155. Kattan, J., et al., Phase II trial of weekly Docetaxel, Zoledronic acid, and Celecoxib for castration-resistant prostate cancer. Invest New Drugs, 2016. 34(4): p. 474-80. 156. James, N.D., et al., Celecoxib plus hormone therapy versus hormone therapy alone for hormone-sensitive prostate cancer: first results from the STAMPEDE multiarm, multistage, randomised controlled trial. Lancet Oncol, 2012. 13(5): p. 549-58. 157. Jeong, Y. and J.L. Lee, Efficacy of metronomic oral cyclophosphamide with low dose dexamethasone and celecoxib in metastatic castration-resistant prostate cancer. Asia Pac J Clin Oncol, 2017. 13(3): p. 204-211. 158. Armstrong, A.J., The STAMPEDE trial and celecoxib: how to adapt? Lancet Oncol, 2012. 13(5): p. 443-5. 159. Stamenkovic, I., Matrix metalloproteinases in tumor invasion and metastasis. Semin Cancer Biol, 2000. 10(6): p. 415-33. 160. Chen, L.M., et al., Down-regulation of prostasin serine protease: a potential invasion suppressor in prostate cancer. Prostate, 2001. 48(2): p. 93-103. 161. Said, A.H., J.P. Raufman, and G. Xie, The role of matrix metalloproteinases in colorectal cancer. Cancers (Basel), 2014. 6(1): p. 366-75. 162. Zucker, S. and J. Vacirca, Role of matrix metalloproteinases (MMPs) in colorectal cancer. Cancer Metastasis Rev, 2004. 23(1-2): p. 101-17. 163. Boutin, A.T., et al., Oncogenic Kras drives invasion and maintains metastases in colorectal cancer. Genes Dev, 2017. 31(4): p. 370-382. 164. Allegra, C.J., et al., American Society of Clinical Oncology provisional clinical opinion: testing for KRAS gene mutations in patients with metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy. J Clin Oncol, 2009. 27(12): p. 2091-6. 165. Yu, K., et al., Response and determinants of cancer cell susceptibility to PI3K inhibitors: combined targeting of PI3K and Mek1 as an effective anticancer strategy. Cancer Biol Ther, 2008. 7(2): p. 307-15. 166. Hoeflich, K.P., et al., Intermittent administration of MEK inhibitor GDC-0973 plus PI3K inhibitor GDC-0941 triggers robust apoptosis and tumor growth inhibition. Cancer Res, 2012. 72(1): p. 210-9. 167. Eberhart, C.E., et al., Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology, 1994. 107(4): p. 1183-8. 168. Gupta, R.A. and R.N. DuBois, Colorectal cancer prevention and treatment by inhibition of cyclooxygenase-2. Nature Reviews Cancer, 2001. 1(1): p. 11-21. 169. Marnett, L.J. and R.N. DuBois, COX-2: a target for colon cancer prevention. Annu Rev Pharmacol Toxicol, 2002. 42: p. 55-80. 170. Ogino, S., et al., Cyclooxygenase-2 expression is an independent predictor of poor prognosis in colon cancer. Clin Cancer Res, 2008. 14(24): p. 8221-7. 171. Herrmann, C., et al., Sulindac sulfide inhibits Ras signaling. Oncogene, 1998. 17(14): p. 1769-76. 172. Li, X., S.S. Pathi, and S. Safe, Sulindac sulfide inhibits colon cancer cell growth and downregulates specificity protein transcription factors. BMC Cancer, 2015. 15: p. 974. 173. Williams, C.S., et al., Sulindac sulfide, but not sulindac sulfone, inhibits colorectal cancer growth. Neoplasia, 1999. 1(2): p. 170-6. 174. Milner, J.M., et al., Matriptase is a novel initiator of cartilage matrix degradation in osteoarthritis. Arthritis Rheum, 2010. 62(7): p. 1955-66. 175. Suzuki, M., et al., Inhibition of tumor invasion by genomic down-regulation of matriptase through suppression of activation of receptor-bound pro-urokinase. J Biol Chem, 2004. 279(15): p. 14899-908. 176. Uhland, K., Matriptase and its putative role in cancer. Cell Mol Life Sci, 2006. 63(24): p. 2968-78. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67531 | - |
| dc.description.abstract | 癌細胞的侵襲和轉移與人類癌症的惡化和病人的存活有強烈的相關性,在這篇研究中,我描述了間質蛋白酶(matriptase)在攝護腺癌和大腸直腸癌中的角色,包括: 1) 間質蛋白酶在第二型環氧合酶(COX-2)所誘導的攝護腺癌細胞侵襲和轉移中的角色; 2) 間質蛋白酶在表皮生長因子/表皮生長因子受體/K-Ras訊息所誘導的大腸直腸癌細胞侵襲中的角色。第一部分:慢性發炎對癌症的發展和惡化扮演了重要的角色。第二型環氧合酶所產生的前列腺素會造成發炎並且在攝護腺癌中常常伴隨著第二型環氧合酶的大量表現。我們想要去探討第二型環氧合酶是透過何種分子機制去促進攝護腺癌細胞侵襲和轉移。並且去探討第二型環氧合酶的抑制者在不同攝護腺癌惡化模式中的影響。結果顯示,在高侵襲的攝護腺癌細胞中,第二型環氧合酶和介白素1 (IL-1) 都有較高的表現,並且與間質蛋白酶有相關性。在攝護腺癌病人的檢體中第二型環氧合酶和間質蛋白酶的表現量也呈現正相關性。此外,大量表現第二型環氧合酶或是其下游產物前列腺素會造成間質蛋白酶的活化和攝護腺癌細胞的侵襲增加 ; 因此,抑制二型環氧合酶的表現可以抑制間質蛋白酶的活化和攝護腺癌細胞的侵襲。此外,在原位異種移植的老鼠模式中,利用希樂葆(Celebrex)和硫酸舒林酸(sulindac sulfide)抑制第二型環氧合酶所誘導的間質蛋白酶活化可以抑制非雄激素和第二型環氧合酶大量表現的攝護癌細胞(PC-3)侵襲,腫瘤生長和肺部轉移。這些結果顯示了,第二型環氧合酶/間質蛋白酶這條訊息貢獻了第二型環氧合酶大量表現和非雄激素的攝護腺癌細胞的侵襲,腫瘤生長和轉移。
第二部分:失調的表皮生長因子受體訊息已經被指出參與了大腸直腸癌細胞的侵襲和轉移。在這篇研究中,我探討了表皮生長因子的訊息是透過何種分子機制來促進大腸直腸癌細胞的侵襲。結果顯示,在侵襲能力較高的大腸直腸癌細胞中(KM12L4和KM12SM),表皮生長因子受體的磷酸化和蛋白質的表現量與活化的間質蛋白酶皆高於侵襲力較差的大腸直腸癌細胞(KM12C)。此外,表皮生長因子可以透過PI3K/AKT的訊息傳遞誘導間質蛋白酶活化和大腸直腸癌細胞的侵襲。大量表現K-Ras(野生型,突變型G12D和突變型G13D)可以藉由活化間質蛋白酶來促進KM12C細胞的侵襲能力。大量表現間質蛋白酶可以促進大腸直腸癌細胞的侵襲力,然後,將間質蛋白酶的表現降低可以減少表皮生長因子和K-Ras所誘導的大腸直腸癌細胞的侵襲力。此外,大量表現持續活化的突變型K-Ras會使KM12C轉變成對表皮生長因子受體抑制者(afatinib)所抑制的細胞侵襲和間質蛋白酶的活化有抗性。抑制PI3K或MEK可以減少K-Ras所誘導的大腸直腸癌細胞侵襲力。這些結果顯示了,間質蛋白酶參與由表皮生長因子/K-Ras/AKT訊息所誘導的大腸直腸癌細胞侵襲作用當中。 總結來說,間質蛋白酶的活化在促進攝護腺癌和大腸直腸癌的惡化過程中扮演了重要的角色,並經由兩種不同的訊息傳遞所活化。在攝護腺癌細胞中是經由第二型環氧合酶/間質蛋白酶,在大腸直腸癌中則是經由表皮生長因子受體/K-Ras/AKT/間質蛋白酶。因此,間質蛋白酶對治療具有癌化變異(例如:第二型環氧合酶,表皮生長因子受體,K-Ras,PI3K…等等)的癌症,將是一個具有潛力的治療標靶。 | zh_TW |
| dc.description.abstract | Cancer cell invasion and metastasis are strongly associated human cancer progression and patients’ survival. In this study, two main projects were performed to address the roles of pericellular protease matriptase in 1) cyclooxygenase-2 (COX-2)-induced prostate cancer (PCa) cell invasion and metastasis, and 2) EGF/EGFR/K-Ras-induced colorectal cancer cell invasion.
Part I: Role of matriptase in COX-2-induced PCa progression- Chronic inflammation plays an important role in cancer development and progression. COX-2 is a key enzyme in generating prostaglandins causing inflammation in PCa. We aim to investigate the molecular mechanism of how COX-2 promotes PCa cell invasion and metastasis and to evaluate the effect of COX-2 inhibitors on PCa progression. Our results showed that the expression of COX-2 and Interleukin 1 (IL-1) was upregulated in highly invasive PCa cells and was correlated with the activated levels of matriptase. The expression levels of COX-2 were increased and correlated with matriptase levels in PCa specimens. Moreover, results showed that COX-2 overexpression or a COX-2 downstream product Prostaglandin E2 (PGE2) caused an increase in matriptase activation and PCa cell invasion, whereas COX-2 silencing antagonized matriptase activation and cell invasion. In addition, the inhibition of COX-2-mediated matriptase activation by Celebrex and sulindac sulfide suppressed the androgen-independent and COX-2-overexpressing PC-3 cell invasion, tumor growth and lung metastasis in an orthotopic xenograft model. These results together indicate that COX-2/matriptase signaling contributes to the invasion, tumor growth and metastasis of COX-2-overexpressing and androgen-independent PCa cells. Part II: Role of matriptase in EGFR/K-Ras-induced colorectal cancer cell invasion and progression- Dysregulation of EGFR signaling have been shown to be involved in colorectal cancer cell invasion and metastasis. In this study, I explored the molecular mechanism how EGF signaling promoted colorectal cancer cell invasion. The results showed the phosphorylation and protein levels of EGFR and activated level of matritpase were increased in highly invasive colorectal cancer KM12L4 and KM12SM cells, compared with parental KM12C cells. Moreover, EGF can induce matriptase activation and colorectal cancer cell invasion through PI3K/AKT rather than RAF/MEK/Erk signaling. K-Ras overexpression (wild-type, G12D and G13D) can enhance KM12C cells invasion through matriptase activation. Matriptase overexpression promoted colorectal cancer cell invasion, whereas matriptase knockdown reduced EGF- and K-Ras-induced colorectal cancer cell invasion. Furthermore, the overexpression of constitutively active K-Ras mutants transformed KM12C cells with resistance to the inhibitory effect of afatinib on the cell invasion and matriptase activation. The inhibition of PI3K or MEK can reduce K-Ras-induced colorectal cancer cell invasion, suggesting that both signal pathways are involved in K-Ras-induced colorectal cancer cell invasion. In summary, the results together indicate that matriptase is involved in EGFR/K-Ras/AKT signaling-induced colorectal cancer cell invasion. In summary, matriptase mediates inflammatory COX-2 signaling in prostate cancer and EGFR/K-Ras/AKT signaling in colorectal cancer, leading to promoting prostate and colorectal cancer cell invasion and progression. Thus, matriptase might serve as a potential therapeutic target for drug development against human cancers with oncogenic mutations of COX-2, EGFR, K-Ras, PI3K etc. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T01:36:20Z (GMT). No. of bitstreams: 1 ntu-106-F98442013-1.pdf: 21259651 bytes, checksum: fe23cc6a4ec094a1d4735e37842ff60d (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 iii Abstract vi Chapter 1. Introduction 1 1.1 Prostate cancer 2 1.2 Cyclooxygenase-2 (COX-2) 3 1.3 Non-steroidal anti-inflammatory drugs 5 1.4 Colorectal cancer 6 1.5 EGFR signaling pathway and colorectal cancer progression 9 1.6 K-Ras signaling 12 1.7 Matriptase 14 1.8 The purpose of this study 17 Chapter 2. Materials and Methods 18 Chapter 3. Results 30 Section 1 30 3.1.1 Correlation of COX-2 signaling with matriptase activation in human prostate cancer (PCa) invasion progression models. 31 3.1.2 COX-2 and matriptase were overexpressed in PCa patients’ tissues. 32 3.1.3 Involvement of COX-2 in matriptase activation and PCa cell invasion. 33 3.1.4 Prostaglandin E2 (PGE2) induced PC3 cell invasion and matriptase activation. 34 3.1.5 Effect of COX-2 inhibition by NSAIDs on matriptase in PC-3 cells. 35 3.1.6 Effect of Celebrex and sulindac sulfide on the viability and invasion of PCa cells. 36 3.1.7 Inhibitory effect of Celebrex on matriptase-overexpressing PC-3 cell migration, invasion and matriptase activation. 37 3.1.8 Role of COX-2 in Celebrex-suppressed PC-3 cell invasion and matriptase activation. 37 3.1.9 Targeting the COX-2/matriptase axis suppressed tumor growth and metastasis in a PCa orthotopic xenograft model. 38 Chapter 3. Results 40 Section 2 40 3.2.1 Colorectal cancer cell progression model. 41 3.2.2 In vitro characteristics of KM12C, KM12-L4 and KM12-SM cells 41 3.2.3 Serine proteases play an important role in colorectal cancer cell invasion 43 3.2.4 EGF induces colorectal cancer cell invasion and matriptase activation. 45 3.2.5 Matriptase is involved in EGF-induced colorectal cancer cell invasion. 46 3.2.6 K-Ras induces colorectal cancer cell invasion and matriptase activation. 48 3.2.7 Effects of Afatinib on constitutively active K-Ras-induced matriptase activation and colorectal cancer cell inavasion. 50 3.2.8 Effect of matriptase knockdown on EGF- and K-Ras-induced KM12C cell invasion. 50 3.2.9 Role of EGFR’s downstream signal molecules (K-Ras, Akt and Erk) in matriptase activation and colorectal cancer cell invasion. 51 3.2.10 Correlation of K-Ras protein levels with the levels of activated matriptase and total matriptase in human archival colorectal cancer specimens. 52 Chapter 4. Discussion 54 Chapter 5. Figures 64 Section 1 64 Figure 1. Establishment of prostate cancer (PCa) PC-3 cell progression model and analysis of COX-2, IL-1β and matriptase expression in PCa cell progression models. 66 Figure 2. Effect of COX-2 on matriptase activation and cell invasion. 70 Figure 3. Effect of PGE2 on matriptase activation and the cell mobility in PC3 cells. 72 Figure 4. Role of matriptase in PGE2-induced PC-3 cell invasion. 74 Figure 5. Analysis of EP receptors in matriptase activation of PC-3 cells. 75 Figure 6. Effect of COX-2 inhibitors on matriptase in PC-3 cells. 78 Figure 7. Effect of Celebrex on the cell viability, migration, invasion and matriptase of DU-145 and LNCaP cells. 80 Figure 8. Roles of COX-2/matriptase in cell migration, invasion and matriptase activation of PC-3 cells. 84 Figure 9. Roles of COX-2/PGE2 in cell migration, invasion and matriptase activation of PC-3 cells. 86 Figure 10. COX-2 inhibitors suppressed tumor growth and metastasis in a PC3 orthotopic xenograft model. 89 Figure 11. Schematic diagram of section 1. 91 Chapter 5. Figures 92 Section 2 92 Figure 1. Establishment of human colorectal cancer progression model. 94 Figure 2. Analysis of the in vitro characteristics of KM12C, KM12-L4 and KM12-SM cells. 95 Figure 3. Examination of the roles of serine protease and metalloprotease in the colorectal cancer cell invasion. 97 Figure 4. EGF induced colorectal cancer cell invasion and matriptase activation. 100 Figure 5. Matriptase was involved in EGF-induced colorectal cancer cell invasion. 104 Figure 6. K-Ras induced colorectal cancer cell invasion and matriptase activation. 108 Figure 7. Effects of Afatinib on K-Ras-induced matriptase activation and colorectal cancer cell invasion. 112 Figure 8. Effects of matriptase knockdown on EGF- and K-Ras-induced KM12C cell invasion. 115 Figure 9. Analyses of the Akt and Erk roles in EGF- and K-Ras-induced matriptase activation and KM12C cell invasion. 117 Figure 10. Correlation of K-Ras protein levels with the levels of activated matriptase and total matriptase in archival human colorectal cancer specimens. 120 Chapter 6. References 122 Publications 135 | |
| dc.language.iso | zh-TW | |
| dc.subject | 表皮生長因子受體 | zh_TW |
| dc.subject | 攝護腺癌 | zh_TW |
| dc.subject | 間質蛋白? | zh_TW |
| dc.subject | 大腸直腸癌 | zh_TW |
| dc.subject | 第二型環氧合? | zh_TW |
| dc.subject | K-Ras | en |
| dc.subject | Matriptase | en |
| dc.subject | prostate cancer | en |
| dc.subject | COX-2 | en |
| dc.subject | colorectal cancer | en |
| dc.subject | EGFR | en |
| dc.title | 間質蛋白酶在攝護腺癌與大腸直腸癌中所扮演的角色 | zh_TW |
| dc.title | Role of matriptase in prostate and colorectal cancer | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 張震東,林泰元,華國泰,黃祥博 | |
| dc.subject.keyword | 間質蛋白?,攝護腺癌,第二型環氧合?,大腸直腸癌,表皮生長因子受體, | zh_TW |
| dc.subject.keyword | Matriptase,prostate cancer,COX-2,colorectal cancer,EGFR,K-Ras, | en |
| dc.relation.page | 135 | |
| dc.identifier.doi | 10.6342/NTU201702373 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-08-01 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
| 顯示於系所單位: | 生物化學暨分子生物學科研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 20.76 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
