請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67512
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 呂學士 | |
dc.contributor.author | Yi-Yen Hsieh | en |
dc.contributor.author | 謝伊妍 | zh_TW |
dc.date.accessioned | 2021-06-17T01:35:28Z | - |
dc.date.available | 2022-08-07 | |
dc.date.copyright | 2017-08-07 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-08-01 | |
dc.identifier.citation | [1] Lancet, The. 'Hypertension: uncontrolled and conquering the world.' (2007): 539.
[2] Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo Jr. JL, Jones DW, Materson BJ, Oparil S, Wright Jr. JT, Roccella EJ, et al. (December 2003). 'Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure'. Hypertension. Joint National Committee On Prevention. 42 (6): 1206–52. doi:10.1161/01.HYP. 0000107251.49515.c2. PMID 14656957. [3] Mancia G; De Backer G; Dominiczak A; et al. (September 2007). '2007 ESH-ESC Practice Guidelines for the Management of Arterial Hypertension: ESH-ESC Task Force on the Management of Arterial Hypertension'. J. Hypertens. 25 (9): 1751–62. doi:10.1097/HJH.0b013e3282f0580f. PMID 17762635. [4] Williams, B; Poulter, NR, Brown, MJ, Davis, M, McInnes, GT, Potter, JF, Sever, PS, McG Thom, S, British Hypertension, Society (March 2004). 'Guidelines for management of hypertension: report of the fourth working party of the British Hypertension Society, 2004-BHS IV'. Journal of Human Hypertension. 18 (3): 139–85. doi:10.1038/sj.jhh.1001683. PMID 14973512 [5] Sorvoja, Hannu, and Raimo Ahonen. 'Noninvasive blood pressure pulse detection and blood pressure determination.' (2006). [6] Dagdeviren, Canan, et al. 'Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring.' Nature communications 5 (2014): 4496. [7] Nelson, Matthew R., et al. 'Noninvasive measurement of central vascular pressures with arterial tonometry: clinical revival of the pulse pressure waveform? .' Mayo Clinic Proceedings. Vol. 85. No. 5. Elsevier, 2010. [8] Poon, C. C. Y., and Y. T. Zhang. 'Cuff-less and noninvasive measurements of arterial blood pressure by pulse transit time.' Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005. 27th Annual International Conference of the. IEEE, 2006. [9] Kachuee, Mohamad, et al. 'Cuff-less high-accuracy calibration-free blood pressure estimation using pulse transit time.' Circuits and Systems (ISCAS), 2015 IEEE International Symposium on. IEEE, 2015. [10] Ye, Soo-young, et al. 'Estimation of systolic and diastolic pressure using the pulse transit time.' World Academy of Science, Engineering and Technology 67 (2010): 726-731. [11] Chen, W., et al. 'Continuous estimation of systolic blood pressure using the pulse arrival time and intermittent calibration.' Medical and Biological Engineering and Computing 38.5 (2000): 569-574. [12] Ciaccio, Edward J., and Gary M. Drzewiecki. 'Tonometric arterial pulse sensor with noise cancellation.' IEEE Transactions on Biomedical Engineering 55.10 (2008): 2388-2396. [13] Janet Fong, 'Invasive arterial pressure monitoring', (2010) http://www.aic.cuhk.edu.hk/web8/art%20line.htm [14] Beevers, Gareth, Gregory YH Lip, and Eoin O'Brien. 'ABC of hypertension: Blood pressure measurement: Part II—Conventional sphygmomanometry: technique of auscultatory blood pressure measurement.' BMJ: British Medical Journal 322.7293 (2001): 1043. [15] “Blood pressure measurement using the auscultatory method based on the (first) korotkoff-sound”, https://en.wikipedia.org/wiki/Korotkoff_sounds [16] “Oscillometric measurement devices”, http://tensoval.com/oscillometric-measurement-devices.php [17] Miyashita, Hiroshi. 'Clinical assessment of central blood pressure.' Current hypertension reviews 8.2 (2012): 80-90. [18] Laurent, Stéphane, et al. 'Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients.' Hypertension 37.5 (2001): 1236-1241. [19] Blacher, Jacques, et al. 'Impact of aortic stiffness on survival in end-stage renal disease.' Circulation 99.18 (1999): 2434-2439. [20] Parati, Gianfranco, et al. 'Spectral analysis of blood pressure and heart rate variability in evaluating cardiovascular regulation.' Hypertension 25.6 (1995): 1276-1286. [21] Niemirska, Anna, et al. 'Blood Pressure Rhythmicity and Visceral Fat in Children With HypertensionNovelty and Significance.' Hypertension 62.4 (2013): 782-788. [22] Cattivelli, Federico S., and Harinath Garudadri. 'Noninvasive cuffless estimation of blood pressure from pulse arrival time and heart rate with adaptive calibration.' Wearable and Implantable Body Sensor Networks, 2009. BSN 2009. Sixth International Workshop on. IEEE, 2009. [23] Furui, Sadaoki. 'Cepstral analysis technique for automatic speaker verification.' IEEE Transactions on Acoustics, Speech, and Signal Processing 29.2 (1981): 254-272. [24] “Convex Optimization” course, Stephen Boyd and Lieven Vandenberghe, https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf [25] “Machine Learning (2016)” course, Hung-yi Lee, http://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2016/Lecture/Regression%20(v6).pdf [26] Moody, George B., and Roger G. Mark. 'A database to support development and evaluation of intelligent intensive care monitoring.' Computers in Cardiology, 1996. IEEE, 1996. [27] Knowlton, F. P., and E. H. Starling. 'The influence of variations in temperature and blood‐pressure on the performance of the isolated mammalian heart.' The Journal of physiology 44.3 (1912): 206-219. [28] Tochikubo, Osamu, et al. 'Effects of insufficient sleep on blood pressure monitored by a new multibiomedical recorder.' Hypertension 27.6 (1996): 1318-1324. [29] “Fitness Trackers Lead Wearable Devices; GoPro reached $1 Billion Before Collecting Any Data; Using Social Media to Drive Brand Awareness; eMail on Mob”, Bernie Fussenegger, https://www.linkedin.com/pulse/fitness-trackers-lead-wearable-devices-gopro-reached-1-fussenegger [30] http://maisense.com/zh/ [31] Martin, Stephanie L-O., et al. 'Weighing Scale-Based Pulse Transit Time is a Superior Marker of Blood Pressure than Conventional Pulse Arrival Time.' Scientific reports 6 (2016). [32] Yang, Guangzhong. Body sensor networks. Ed. Guang-Zhong Yang. Vol. 1. London: Springer, 2006. [33] Thompson, Geoffrey O. 'Method for establishing a master-slave relationship in a peer-to-peer network.' U.S. Patent No. 6,192,397. 20 Feb. 2001. [34] Electrocardiography https://en.wikipedia.org/wiki/Electrocardiography | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67512 | - |
dc.description.abstract | 心血管疾病(CVD)已經成為全球死亡的主要原因(據世界衛生組織2016年6月的報導)。其中,一個簡易而有效來預防心血管疾病的方法即是測量和監測血壓(BP)的數值,而血壓常被作為心血管系統的生理指標。先前的研究提出使用脈搏傳播時間(PTT)信息來計算血壓。在本篇論文中,我們提出一種基於線性回歸模型的新方法,其包含靜態和動態脈搏傳播時間(DPTT)作為參數,以提供更準確的預測血壓數值。此外,所提出的模型中,將預測的收縮壓(SBP)作為估計舒張壓時的參數,實驗結果顯示能提高舒張壓預測能力,顯示預測的收縮壓為估計舒張壓預測提供了有用的信息。依據本論文的實驗結果顯示,相比先前研究中單以靜態脈搏傳播時間的預測結果,本模型預測出之血壓數值與其真實數據(ground-truth)的相關係數(correlation of coefficient)顯著提高,且均方誤差(mean squared error)顯著下降,顯示本論文中提出的模型可以更準確地預測血壓,這些結果證實了將動態脈搏傳播時間納入準確血壓預測模型參數的有效性。此外,我們提出一種用於本血壓預測模型的無線系統與其心電圖(ECG)和光電容積圖(PPG)傳感器間的同步機制。本論文也將展示初步實驗結果和未來實踐的建議。 | zh_TW |
dc.description.abstract | Cardiovascular diseases (CVDs) have become the leading cause of death globally (as reported by the WHO, June 2016). An effective method of preventing CVDs is to measure and monitor blood pressure (BP), which serves as a physiological indicator for cardiovascular systems. A previous research has proposed the use of pulse transit time (PTT) information to compute the BP measure. We propose herein a novel method based on a linear regression model that incorporates static and dynamic PTT features to predict BP measures more accurately. Moreover, the proposed model considers the estimated systolic blood pressure (SBP) when estimating the diastolic blood pressure (DBP), our experimental results demonstrate that the proposed method attains a better DBP prediction capability. The experimental results show that the proposed method can predict the BP more accurately than conventional methods, with notably higher correlation scores and lower mean square errors. Besides, a wireless system for our blood pressure prediction algorithm and its synchronization mechanism between ECG (electrocardiography) and photoplethysmogram (PPG) sensors is also proposed. In addition, the preliminary experimental results and advices for future implementation will be shown in the thesis. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T01:35:28Z (GMT). No. of bitstreams: 1 ntu-106-R04943057-1.pdf: 8443113 bytes, checksum: 2d7e730947ea2e36501e11add438d941 (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 中文摘要 iii ABSTRACT iv CONTENTS v LIST OF FIGURES vii LIST OF TABLES x Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Organization 5 Chapter 2 Basic Background Information 7 2.1 Principles of Common Blood Pressure Measurement 7 2.1.1 Invasive Blood Pressure Monitoring 7 2.1.2 Noninvasive Method 9 2.2 Fundamental of the Physiological Signals 16 2.2.1 Electrocardiography Signals (ECG) 16 2.2.2 Photoplethysmogram Signals (PPG) 20 2.2.3 Moens-Korteweg Equation 22 2.2.4 Pulse Transit Time (PTT) 23 2.2.5 Dynamic Pulse Transit Time (DPTT) 26 2.3 Fundamentals of Linear Regression Model 28 2.3.1 Linear Regression (LR) Model 28 2.3.2 Loss Function of Linear Regression Model 29 2.3.3 Gradient Descent 30 Chapter 3 Blood Pressure Prediction Algorithm and Experimental Results 34 3.1 Proposed Blood Pressure Prediction Algorithm 34 3.2 Experimental Results 38 3.2.1 Dataset 38 3.2.2 Performance Evaluation Criteria 39 3.2.3 Performance Evaluation of Systolic Blood Pressure (SBP) 40 3.2.4 Performance Evaluation of Diastolic Blood Pressure (DBP) 42 3.3 Qualitative SBP/DBP Prediction Results 45 3.4 Spectral Analyses on the SBP/DBP Prediction Errors 48 Chapter 4 Proposed Wireless Synchronization Mechanism in the Noninvasive and Realtime Blood Pressure Prediction System 52 4.1 Recent Commercial Noninvasive BP Prediction System 52 4.2 Structure of Two Major Types of Wearable Devices for Noninvasive Blood Pressure Measurement 56 4.3 Proposed Noninvasive and Realtime BP Prediction System with Wireless Synchronization Mechanism 58 4.4 Preliminary Implementation Details of Proposed BP Prediction System 63 Chapter 5 Conclusion 68 References 71 | |
dc.language.iso | en | |
dc.title | 以非侵入式生理訊號連續預測血壓系統與其無線同步機制 | zh_TW |
dc.title | Realtime Blood Pressure Prediction System with Noninvasive Physiological Features and Wireless Synchronization Mechanism | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 孟慶宗,彭盛裕,曹昱 | |
dc.subject.keyword | 血壓,連續性血壓量測,動態脈搏傳播時間,脈搏傳播時間,線性回歸模型,非侵入式血壓量測, | zh_TW |
dc.subject.keyword | blood pressure,continuous blood pressure monitoring,noninvasive blood pressure monitoring,dynamic pulse transit time,pulse transit time,linear regression, | en |
dc.relation.page | 76 | |
dc.identifier.doi | 10.6342/NTU201702425 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-08-02 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
顯示於系所單位: | 電子工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 8.25 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。