Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67494
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林劭品(Shau-Ping Lin)
dc.contributor.authorChih-Yun Yuen
dc.contributor.author游芷芸zh_TW
dc.date.accessioned2021-06-17T01:34:40Z-
dc.date.available2025-08-15
dc.date.copyright2020-08-24
dc.date.issued2020
dc.date.submitted2020-08-15
dc.identifier.citationReferences
Baker, D. J., Childs, B. G., Durik, M., Wijers, M. E., Sieben, C. J., Zhong, J., . . . van Deursen, J. M. (2016). Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature, 530(7589), 184-189. doi:10.1038/nature16932
Baker, D. J., Wijshake, T., Tchkonia, T., LeBrasseur, N. K., Childs, B. G., van de Sluis, B., . . . van Deursen, J. M. (2011). Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature, 479(7372), 232-236. doi:10.1038/nature10600
Belancio, V. P., Roy-Engel, A. M., Pochampally, R. R., Deininger, P. (2010). Somatic expression of LINE-1 elements in human tissues. Nucleic Acids Res, 38(12), 3909-3922. doi:10.1093/nar/gkq132
Benayoun, B. A., Pollina, E. A., Brunet, A. (2015). Epigenetic regulation of ageing: linking environmental inputs to genomic stability. Nat Rev Mol Cell Biol, 16(10), 593-610. doi:10.1038/nrm4048
Benayoun, B. A., Pollina, E. A., Singh, P. P., Mahmoudi, S., Harel, I., Casey, K. M., . . . Brunet, A. (2019). Remodeling of epigenome and transcriptome landscapes with aging in mice reveals widespread induction of inflammatory responses. Genome Res, 29(4), 697-709. doi:10.1101/gr.240093.118
Bitto, A., Ito, T. K., Pineda, V. V., LeTexier, N. J., Huang, H. Z., Sutlief, E., . . . Kaeberlein, M. (2016). Transient rapamycin treatment can increase lifespan and healthspan in middle-aged mice. Elife, 5. doi:10.7554/eLife.16351
Bodnar, A. G., Ouellette, M., Frolkis, M., Holt, S. E., Chiu, C. P., Morin, G. B., . . . Wright, W. E. (1998). Extension of life-span by introduction of telomerase into normal human cells. Science, 279(5349), 349-352.
Bourc'his, D., Bestor, T. H. (2004). Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature, 431(7004), 96-99. doi:10.1038/nature02886
Bourc'his, D., Xu, G. L., Lin, C. S., Bollman, B., Bestor, T. H. (2001). Dnmt3L and the establishment of maternal genomic imprints. Science, 294(5551), 2536-2539. doi:10.1126/science.1065848
Bracken, A. P., Kleine-Kohlbrecher, D., Dietrich, N., Pasini, D., Gargiulo, G., Beekman, C., . . . Helin, K. (2007). The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes Dev, 21(5), 525-530. doi:10.1101/gad.415507
Callinan, P. A., Batzer, M. A. (2006). Retrotransposable elements and human disease. Genome Dyn, 1, 104-115. doi:10.1159/000092503
Caretti, G., Di Padova, M., Micales, B., Lyons, G. E., Sartorelli, V. (2004). The Polycomb Ezh2 methyltransferase regulates muscle gene expression and skeletal muscle differentiation. Genes Dev, 18(21), 2627-2638. doi:10.1101/gad.1241904
Cherif, H., Bisson, D. G., Jarzem, P., Weber, M., Ouellet, J. A., Haglund, L. (2019). Curcumin and o-Vanillin Exhibit Evidence of Senolytic Activity in Human IVD Cells In Vitro. J Clin Med, 8(4). doi:10.3390/jcm8040433
Childs, B. G., Baker, D. J., Kirkland, J. L., Campisi, J., van Deursen, J. M. (2014). Senescence and apoptosis: dueling or complementary cell fates? EMBO Rep, 15(11), 1139-1153. doi:10.15252/embr.201439245
Coppe, J. P., Desprez, P. Y., Krtolica, A., Campisi, J. (2010). The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol, 5, 99-118. doi:10.1146/annurev-pathol-121808-102144
Cruickshanks, H. A., McBryan, T., Nelson, D. M., Vanderkraats, N. D., Shah, P. P., van Tuyn, J., . . . Adams, P. D. (2013). Senescent cells harbour features of the cancer epigenome. Nat Cell Biol, 15(12), 1495-1506. doi:10.1038/ncb2879
d'Adda di Fagagna, F. (2008). Living on a break: cellular senescence as a DNA-damage response. Nat Rev Cancer, 8(7), 512-522. doi:10.1038/nrc2440
Dang, W., Steffen, K. K., Perry, R., Dorsey, J. A., Johnson, F. B., Shilatifard, A., . . . Berger, S. L. (2009). Histone H4 lysine 16 acetylation regulates cellular lifespan. Nature, 459(7248), 802-807. doi:10.1038/nature08085
De Cecco, M., Criscione, S. W., Peckham, E. J., Hillenmeyer, S., Hamm, E. A., Manivannan, J., . . . Sedivy, J. M. (2013). Genomes of replicatively senescent cells undergo global epigenetic changes leading to gene silencing and activation of transposable elements. Aging Cell, 12(2), 247-256. doi:10.1111/acel.12047
De Cecco, M., Criscione, S. W., Peterson, A. L., Neretti, N., Sedivy, J. M., Kreiling, J. A. (2013). Transposable elements become active and mobile in the genomes of aging mammalian somatic tissues. Aging (Albany NY), 5(12), 867-883. doi:10.18632/aging.100621
De Cecco, M., Ito, T., Petrashen, A. P., Elias, A. E., Skvir, N. J., Criscione, S. W., . . . Sedivy, J. M. (2019). L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature, 566(7742), 73-78. doi:10.1038/s41586-018-0784-9
de Koning, A. P., Gu, W., Castoe, T. A., Batzer, M. A., Pollock, D. D. (2011). Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet, 7(12), e1002384. doi:10.1371/journal.pgen.1002384
de Magalhaes, J. P., Passos, J. F. (2018). Stress, cell senescence and organismal ageing. Mech Ageing Dev, 170, 2-9. doi:10.1016/j.mad.2017.07.001
Deragon, J. M., Capy, P. (2000). Impact of transposable elements on the human genome. Ann Med, 32(4), 264-273.
Dozmorov, M. G. (2015). Polycomb repressive complex 2 epigenomic signature defines age-associated hypermethylation and gene expression changes. Epigenetics, 10(6), 484-495. doi:10.1080/15592294.2015.1040619
Feser, J., Truong, D., Das, C., Carson, J. J., Kieft, J., Harkness, T., Tyler, J. K. (2010). Elevated histone expression promotes life span extension. Mol Cell, 39(5), 724-735. doi:10.1016/j.molcel.2010.08.015
Fuhrmann-Stroissnigg, H., Niedernhofer, L. J., Robbins, P. D. (2018). Hsp90 inhibitors as senolytic drugs to extend healthy aging. Cell Cycle, 17(9), 1048-1055. doi:10.1080/15384101.2018.1475828
Fumagalli, M., Rossiello, F., Mondello, C., d'Adda di Fagagna, F. (2014). Stable cellular senescence is associated with persistent DDR activation. PLoS One, 9(10), e110969. doi:10.1371/journal.pone.0110969
Ginjala, V., Nacerddine, K., Kulkarni, A., Oza, J., Hill, S. J., Yao, M., . . . Ganesan, S. (2011). BMI1 is recruited to DNA breaks and contributes to DNA damage-induced H2A ubiquitination and repair. Mol Cell Biol, 31(10), 1972-1982. doi:10.1128/MCB.00981-10
Guelen, L., Pagie, L., Brasset, E., Meuleman, W., Faza, M. B., Talhout, W., . . . van Steensel, B. (2008). Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature, 453(7197), 948-951. doi:10.1038/nature06947
Hancks, D. C., Kazazian, H. H., Jr. (2012). Active human retrotransposons: variation and disease. Curr Opin Genet Dev, 22(3), 191-203. doi:10.1016/j.gde.2012.02.006
Hayflick, L. (1965). The Limited in Vitro Lifetime of Human Diploid Cell Strains. Exp Cell Res, 37, 614-636.
Hayflick, L., Moorhead, P. S. (1961). The serial cultivation of human diploid cell strains. Exp Cell Res, 25, 585-621.
Hewitt, G., Jurk, D., Marques, F. D., Correia-Melo, C., Hardy, T., Gackowska, A., . . . Passos, J. F. (2012). Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence. Nat Commun, 3, 708. doi:10.1038/ncomms1708
Hodny, Z., Hubackova, S., Bartek, J. (2010). Cytokines shape chemotherapy-induced and 'bystander' senescence. Aging (Albany NY), 2(7), 375-376. doi:10.18632/aging.100171
Inouye, S., Yuki, S., Saigo, K. (1984). Sequence-specific insertion of the Drosophila transposable genetic element 17.6. Nature, 310(5975), 332-333.
Iyengar, S., Farnham, P. J. (2011). KAP1 protein: an enigmatic master regulator of the genome. J Biol Chem, 286(30), 26267-26276. doi:10.1074/jbc.R111.252569
Jeyapalan, J. C., Ferreira, M., Sedivy, J. M., Herbig, U. (2007). Accumulation of senescent cells in mitotic tissue of aging primates. Mech Ageing Dev, 128(1), 36-44. doi:10.1016/j.mad.2006.11.008
Jia, D., Jurkowska, R. Z., Zhang, X., Jeltsch, A., Cheng, X. (2007). Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature, 449(7159), 248-251. doi:10.1038/nature06146
Jurk, D., Wilson, C., Passos, J. F., Oakley, F., Correia-Melo, C., Greaves, L., . . . von Zglinicki, T. (2014). Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nat Commun, 2, 4172. doi:10.1038/ncomms5172
Justice, J. N., Nambiar, A. M., Tchkonia, T., LeBrasseur, N. K., Pascual, R., Hashmi, S. K., . . . Kirkland, J. L. (2019). Senolytics in idiopathic pulmonary fibrosis: Results from a first-in-human, open-label, pilot study. EBioMedicine, 40, 554-563. doi:10.1016/j.ebiom.2018.12.052
Kaczkowski, B., Tanaka, Y., Kawaji, H., Sandelin, A., Andersson, R., Itoh, M., . . . Consortium, F. (2016). Transcriptome Analysis of Recurrently Deregulated Genes across Multiple Cancers Identifies New Pan-Cancer Biomarkers. Cancer Res, 76(2), 216-226. doi:10.1158/0008-5472.CAN-15-0484
Kao, T. H., Liao, H. F., Wolf, D., Tai, K. Y., Chuang, C. Y., Lee, H. S., . . . Lin, S. P. (2014). Ectopic DNMT3L triggers assembly of a repressive complex for retroviral silencing in somatic cells. J Virol, 88(18), 10680-10695. doi:10.1128/JVI.01176-14
Kim, E. C., Kim, J. R. (2019). Senotherapeutics: emerging strategy for healthy aging and age-related disease. BMB Rep, 52(1), 47-55.
Krtolica, A., Parrinello, S., Lockett, S., Desprez, P. Y., Campisi, J. (2001). Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci U S A, 98(21), 12072-12077. doi:10.1073/pnas.211053698
Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., . . . International Human Genome Sequencing, C. (2001). Initial sequencing and analysis of the human genome. Nature, 409(6822), 860-921. doi:10.1038/35057062
Liao, H. F., Mo, C. F., Wu, S. C., Cheng, D. H., Yu, C. Y., Chang, K. W., . . . Lin, S. P. (2015). Dnmt3l-knockout donor cells improve somatic cell nuclear transfer reprogramming efficiency. Reproduction, 150(4), 245-256. doi:10.1530/REP-15-0031
Liao, H. F., Tai, K. Y., Chen, W. S., Cheng, L. C., Ho, H. N., Lin, S. P. (2012). Functions of DNA methyltransferase 3-like in germ cells and beyond. Biol Cell, 104(10), 571-587. doi:10.1111/boc.201100109
Lieberman-Aiden, E., van Berkum, N. L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., . . . Dekker, J. (2009). Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science, 326(5950), 289-293. doi:10.1126/science.1181369
Lowe, R., Overhoff, M. G., Ramagopalan, S. V., Garbe, J. C., Koh, J., Stampfer, M. R., . . . Bishop, C. L. (2015). The senescent methylome and its relationship with cancer, ageing and germline genetic variation in humans. Genome Biol, 16, 194. doi:10.1186/s13059-015-0748-4
Luo, W., Xiong, W., Zhou, J., Fang, Z., Chen, W., Fan, Y., Li, F. (2011). Laminar shear stress delivers cell cycle arrest and anti-apoptosis to mesenchymal stem cells. Acta Biochim Biophys Sin (Shanghai), 43(3), 210-216. doi:10.1093/abbs/gmr004
Macieira-Coelho, A., Puvion-Dutilleul, F. (1985). Genome reorganization during aging of dividing cells. Adv Exp Med Biol, 190, 391-419.
Maertens, G. N., El Messaoudi-Aubert, S., Racek, T., Stock, J. K., Nicholls, J., Rodriguez-Niedenfuhr, M., . . . Peters, G. (2009). Several distinct polycomb complexes regulate and co-localize on the INK4a tumor suppressor locus. PLoS One, 4(7), e6380. doi:10.1371/journal.pone.0006380
McCord, R. P., Nazario-Toole, A., Zhang, H., Chines, P. S., Zhan, Y., Erdos, M. R., . . . Cao, K. (2013). Correlated alterations in genome organization, histone methylation, and DNA-lamin A/C interactions in Hutchinson-Gilford progeria syndrome. Genome Res, 23(2), 260-269. doi:10.1101/gr.138032.112
Mouse Genome Sequencing, C., Waterston, R. H., Lindblad-Toh, K., Birney, E., Rogers, J., Abril, J. F., . . . Lander, E. S. (2002). Initial sequencing and comparative analysis of the mouse genome. Nature, 420(6915), 520-562. doi:10.1038/nature01262
Murakami, Y. (2013). Histone deacetylases govern heterochromatin in every phase. EMBO J, 32(17), 2301-2303. doi:10.1038/emboj.2013.154
Myrianthopoulos, V. (2018). The emerging field of senotherapeutic drugs. Future Med Chem, 10(20), 2369-2372. doi:10.4155/fmc-2018-0234
Naylor, R. M., Baker, D. J., van Deursen, J. M. (2013). Senescent cells: a novel therapeutic target for aging and age-related diseases. Clin Pharmacol Ther, 93(1), 105-116. doi:10.1038/clpt.2012.193
Nelson, G., Wordsworth, J., Wang, C., Jurk, D., Lawless, C., Martin-Ruiz, C., von Zglinicki, T. (2012). A senescent cell bystander effect: senescence-induced senescence. Aging Cell, 11(2), 345-349. doi:10.1111/j.1474-9726.2012.00795.x
Neri, F., Krepelova, A., Incarnato, D., Maldotti, M., Parlato, C., Galvagni, F., . . . Oliviero, S. (2013). Dnmt3L antagonizes DNA methylation at bivalent promoters and favors DNA methylation at gene bodies in ESCs. Cell, 155(1), 121-134. doi:10.1016/j.cell.2013.08.056
O'Sullivan, R. J., Kubicek, S., Schreiber, S. L., Karlseder, J. (2010). Reduced histone biosynthesis and chromatin changes arising from a damage signal at telomeres. Nat Struct Mol Biol, 17(10), 1218-1225. doi:10.1038/nsmb.1897
Oberdoerffer, P., Sinclair, D. A. (2007). The role of nuclear architecture in genomic instability and ageing. Nat Rev Mol Cell Biol, 8(9), 692-702. doi:10.1038/nrm2238
Ooi, S. K., Qiu, C., Bernstein, E., Li, K., Jia, D., Yang, Z., . . . Bestor, T. H. (2007). DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature, 448(7154), 714-717. doi:10.1038/nature05987
Pal, S., Tyler, J. K. (2016). Epigenetics and aging. Sci Adv, 2(7), e1600584. doi:10.1126/sciadv.1600584
Palmer, A. K., Xu, M., Zhu, Y., Pirtskhalava, T., Weivoda, M. M., Hachfeld, C. M., . . . Kirkland, J. L. (2019). Targeting senescent cells alleviates obesity-induced metabolic dysfunction. Aging Cell, 18(3), e12950. doi:10.1111/acel.12950
Parrinello, S., Coppe, J. P., Krtolica, A., Campisi, J. (2005). Stromal-epithelial interactions in aging and cancer: senescent fibroblasts alter epithelial cell differentiation. J Cell Sci, 118(Pt 3), 485-496. doi:10.1242/jcs.01635
Parrinello, S., Samper, E., Krtolica, A., Goldstein, J., Melov, S., Campisi, J. (2003). Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts. Nat Cell Biol, 5(8), 741-747. doi:10.1038/ncb1024
Rubin, H. (2002). The disparity between human cell senescence in vitro and lifelong replication in vivo. Nat Biotechnol, 20(7), 675-681. doi:10.1038/nbt0702-675
Sadaie, M., Salama, R., Carroll, T., Tomimatsu, K., Chandra, T., Young, A. R., . . . Narita, M. (2013). Redistribution of the Lamin B1 genomic binding profile affects rearrangement of heterochromatic domains and SAHF formation during senescence. Genes Dev, 27(16), 1800-1808. doi:10.1101/gad.217281.113
Saigo, K. (1984). [Structure and evolution of movable genetic elements in eukaryotes]. Seikagaku, 56(6), 371-387.
Saigo, K., Kugimiya, W., Matsuo, Y., Inouye, S., Yoshioka, K., Yuki, S. (1984). Identification of the coding sequence for a reverse transcriptase-like enzyme in a transposable genetic element in Drosophila melanogaster. Nature, 312(5995), 659-661.
Saretzki, G., Von Zglinicki, T. (2002). Replicative aging, telomeres, and oxidative stress. Ann N Y Acad Sci, 959, 24-29.
Schultz, D. C., Ayyanathan, K., Negorev, D., Maul, G. G., Rauscher, F. J., 3rd. (2002). SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev, 16(8), 919-932. doi:10.1101/gad.973302
Seirin-Lee, S., Osakada, F., Takeda, J., Tashiro, S., Kobayashi, R., Yamamoto, T., Ochiai, H. (2019). Role of dynamic nuclear deformation on genomic architecture reorganization. PLoS Comput Biol, 15(9), e1007289. doi:10.1371/journal.pcbi.1007289
Sen, P., Shah, P. P., Nativio, R., Berger, S. L. (2016). Epigenetic Mechanisms of Longevity and Aging. Cell, 166(4), 822-839. doi:10.1016/j.cell.2016.07.050
Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D., Lowe, S. W. (1997). Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell, 88(5), 593-602.
Shah, P. P., Donahue, G., Otte, G. L., Capell, B. C., Nelson, D. M., Cao, K., . . . Berger, S. L. (2013). Lamin B1 depletion in senescent cells triggers large-scale changes in gene expression and the chromatin landscape. Genes Dev, 27(16), 1787-1799. doi:10.1101/gad.223834.113
Shih, Y. C., Chen, C. L., Zhang, Y., Mellor, R. L., Kanter, E. M., Fang, Y., . . . Yang, K. C. (2018). Endoplasmic Reticulum Protein TXNDC5 Augments Myocardial Fibrosis by Facilitating Extracellular Matrix Protein Folding and Redox-Sensitive Cardiac Fibroblast Activation. Circ Res, 122(8), 1052-1068. doi:10.1161/CIRCRESAHA.117.312130
Smallwood, S. A., Tomizawa, S., Krueger, F., Ruf, N., Carli, N., Segonds-Pichon, A., . . . Kelsey, G. (2011). Dynamic CpG island methylation landscape in oocytes and preimplantation embryos. Nat Genet, 43(8), 811-814. doi:10.1038/ng.864
Song, S., Johnson, F. B. (2018). Epigenetic Mechanisms Impacting Aging: A Focus on Histone Levels and Telomeres. Genes (Basel), 9(4). doi:10.3390/genes9040201
Sotthibundhu, A., Promjuntuek, W., Liu, M., Shen, S., Noisa, P. (2018). Roles of autophagy in controlling stem cell identity: a perspective of self-renewal and differentiation. Cell Tissue Res, 374(2), 205-216. doi:10.1007/s00441-018-2829-7
Spaulding, C. C., Walford, R. L., Effros, R. B. (1997). The accumulation of non-replicative, non-functional, senescent T cells with age is avoided in calorically restricted mice by an enhancement of T cell apoptosis. Mech Ageing Dev, 93(1-3), 25-33.
Sripathy, S. P., Stevens, J., Schultz, D. C. (2006). The KAP1 corepressor functions to coordinate the assembly of de novo HP1-demarcated microenvironments of heterochromatin required for KRAB zinc finger protein-mediated transcriptional repression. Mol Cell Biol, 26(22), 8623-8638. doi:10.1128/MCB.00487-06
Suram, A., Kaplunov, J., Patel, P. L., Ruan, H., Cerutti, A., Boccardi, V., . . . Herbig, U. (2012). Oncogene-induced telomere dysfunction enforces cellular senescence in human cancer precursor lesions. EMBO J, 31(13), 2839-2851. doi:10.1038/emboj.2012.132
Tchkonia, T., Zhu, Y., van Deursen, J., Campisi, J., Kirkland, J. L. (2013). Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J Clin Invest, 123(3), 966-972. doi:10.1172/JCI64098
Tonini, T., Bagella, L., D'Andrilli, G., Claudio, P. P., Giordano, A. (2004). Ezh2 reduces the ability of HDAC1-dependent pRb2/p130 transcriptional repression of cyclin A. Oncogene, 23(28), 4930-4937. doi:10.1038/sj.onc.1207608
Toussaint, O., Royer, V., Salmon, M., Remacle, J. (2002). Stress-induced premature senescence and tissue ageing. Biochem Pharmacol, 64(5-6), 1007-1009.
van der Vlag, J., Otte, A. P. (1999). Transcriptional repression mediated by the human polycomb-group protein EED involves histone deacetylation. Nat Genet, 23(4), 474-478. doi:10.1038/70602
Van Meter, M., Kashyap, M., Rezazadeh, S., Geneva, A. J., Morello, T. D., Seluanov, A., Gorbunova, V. (2014). SIRT6 represses LINE1 retrotransposons by ribosylating KAP1 but this repression fails with stress and age. Nat Commun, 5, 5011. doi:10.1038/ncomms6011
Wang, C., Jurk, D., Maddick, M., Nelson, G., Martin-Ruiz, C., von Zglinicki, T. (2009). DNA damage response and cellular senescence in tissues of aging mice. Aging Cell, 8(3), 311-323. doi:10.1111/j.1474-9726.2009.00481.x
Webster, K. E., O'Bryan, M. K., Fletcher, S., Crewther, P. E., Aapola, U., Craig, J., . . . Scott, H. S. (2005). Meiotic and epigenetic defects in Dnmt3L-knockout mouse spermatogenesis. Proc Natl Acad Sci U S A, 102(11), 4068-4073. doi:10.1073/pnas.0500702102
Williamson, C. M., Turner, M. D., Ball, S. T., Nottingham, W. T., Glenister, P., Fray, M., . . . Peters, J. (2006). Identification of an imprinting control region affecting the expression of all transcripts in the Gnas cluster. Nat Genet, 38(3), 350-355. doi:10.1038/ng1731
Willis-Martinez, D., Richards, H. W., Timchenko, N. A., Medrano, E. E. (2010). Role of HDAC1 in senescence, aging, and cancer. Exp Gerontol, 45(4), 279-285. doi:10.1016/j.exger.2009.10.001
Xie, K., Ryan, D. P., Pearson, B. L., Henzel, K. S., Neff, F., Vidal, R. O., . . . Ehninger, D. (2018). Epigenetic alterations in longevity regulators, reduced life span, and exacerbated aging-related pathology in old father offspring mice. Proc Natl Acad Sci U S A, 115(10), E2348-E2357. doi:10.1073/pnas.1707337115
Xu, M., Bradley, E. W., Weivoda, M. M., Hwang, S. M., Pirtskhalava, T., Decklever, T., . . . Kirkland, J. L. (2017). Transplanted Senescent Cells Induce an Osteoarthritis-Like Condition in Mice. J Gerontol A Biol Sci Med Sci, 72(6), 780-785. doi:10.1093/gerona/glw154
Xu, M., Palmer, A. K., Ding, H., Weivoda, M. M., Pirtskhalava, T., White, T. A., . . . Kirkland, J. L. (2015). Targeting senescent cells enhances adipogenesis and metabolic function in old age. Elife, 4, e12997. doi:10.7554/eLife.12997
Xu, M., Pirtskhalava, T., Farr, J. N., Weigand, B. M., Palmer, A. K., Weivoda, M. M., . . . Kirkland, J. L. (2018). Senolytics improve physical function and increase lifespan in old age. Nat Med, 24(8), 1246-1256. doi:10.1038/s41591-018-0092-9
Xue, W., Zender, L., Miething, C., Dickins, R. A., Hernando, E., Krizhanovsky, V., . . . Lowe, S. W. (2007). Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature, 445(7128), 656-660. doi:10.1038/nature05529
Zhang, W., Xu, J. (2017). DNA methyltransferases and their roles in tumorigenesis. Biomark Res, 5, 1. doi:10.1186/s40364-017-0081-z
Zhu, Y., Doornebal, E. J., Pirtskhalava, T., Giorgadze, N., Wentworth, M., Fuhrmann-Stroissnigg, H., . . . Kirkland, J. L. (2017). New agents that target senescent cells: the flavone, fisetin, and the BCL-XL inhibitors, A1331852 and A1155463. Aging (Albany NY), 9(3), 955-963. doi:10.18632/aging.101202
Zhu, Y., Tchkonia, T., Pirtskhalava, T., Gower, A. C., Ding, H., Giorgadze, N., . . . Kirkland, J. L. (2015). The Achilles' heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell, 14(4), 644-658. doi:10.1111/acel.12344
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67494-
dc.description.abstract細胞增生與衰老之間的平衡,與器官生成、老化、再生醫學及癌症發生有密切關係。隨著細胞衰老,細胞核發生結構重整以及表觀基因體重塑,而衰老細胞中異染色質比例下降,會漸漸失去對反轉錄跳躍子的抑制。活化的反轉錄跳躍子將威脅基因體完整性。為維持細胞分裂複製基因模板的正確性,無法修復的細胞將進入「不分裂程序」,我們稱這樣的細胞作「殭屍細胞 (senescence cell)」。這些不分裂的殭屍細胞並未被修復,在被清除前仍為不穩定之存在。本研究中意外發現,表現外源類三號DNA甲基化因子(DNA methylatransferase 3-like,DNMT3L) 可以在分裂代數較晚的小鼠胚胎纖維母細胞 (mouse embryonic fibrobalsts, MEFs) 中,透過細胞核結構重整以及表觀基因修飾重塑,召集表觀基因調控蛋白以靜默跳躍子,顯著延緩老化的細胞進入不分裂程序。類三號DNA甲基化因子相對顯著表現於生殖細胞與幹細胞中,作用為協助抑制跳躍子及建立親緣特異性之基因組印痕標記。完整的DNMT3L蛋白在體細胞內難以測得存在。本研究發現僅需「暫時性」給予老化的小鼠纖維母細胞外源性DNMT3L即可修復大半老化細胞中監管異常的表觀基因,使整體基因表現趨勢相對受控。反觀現有的細胞抗老化研究模式:多強行使衰老細胞重新進入細胞周期,而未修復可能具癌化風險的老化表觀基因體,本研究利用表觀基因組及轉錄基因組的分析,解構DNMT3L造成抗老化現象之分子機轉,並鑑定參與抗老化的因子,提供一新穎的角度開發相對安全的抗老化因子─利用DNMT3L短暫表現模式,緩解基因體不穩定的危險因子,開啟抗老化相關研究的新方向並提供降低癌症的風險的線索,希冀在未來應用於開發老化相關疾病的預防及治療。zh_TW
dc.description.abstractLoosening epigenetic control during cellular aging increases chromatin instability. To mitigate damage, cells with irreparable damage of all kinds would enter senescence. However, senescence only blocks cell proliferation for these damaged cells without fixing their aberrant chromatin signatures, which remain unstable and could be cancer-prone. As a serendipitous finding via studying retroviral silencing activities, we discovered that the transient ectopic expression of DNA methyltransferase 3-like (DNMT3L) was sufficient to drive late-passage mouse embryonic fibroblasts (MEFs) to halt senescence progression. DNMT3L promotes repression of some endogenous transposable elements and de-repressed coding genes in old MEFs. While DNMT3L repressed endogenous retroviruses by attracting H3K9me3 modification, the coding genes re-repressed in old MEFs by DNMT3L were mostly Polycomb Repressive Complex 2 (PRC2) targets in young MEFs. The up-regulation of those genes in old MEFs was associated with loss of the PRC2 mediated repressive mark, H3K27me3. After transient ectopic DNMT3L expression, a panel of PRC2 modulated genes regained repressive chromatin features. We demonstrated the interaction between DNMT3L and PRC2 in our system. Our data suggest that ectopic DNMT3L may guide PRC2 to redress certain loosened chromatin regions in aging cells. This study opens perspectives in the development of an epigenetic reinforcement strategy to overcome aging-associated epimutation and senescence.en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:34:40Z (GMT). No. of bitstreams: 1
U0001-1508202017195300.pdf: 11378603 bytes, checksum: 4fd221708d8eb978bdeb12a87d5b1d08 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontentsPreface #
口試委員會審定書 #
誌謝 i
中文摘要 iii
ABSTRACT iv
TABLE OF CONTENTS v
ABBREVIATIONS x
LIST OF FIGURES xii
Chapter 1 Introduction 1
1.1 Accumulation of senescent cells is a hallmark of aging 1
1.1.1 Senescent cells increase in aging tissue 1
1.1.2 Cellular senescence and aging-related diseases 2
1.1.3 Eliminating the senescent cells to extend healthspan 4
1.2 The trigger of cellular senescence 5
1.2.1 The limitation of cell-replication 5
1.2.2 Replicative senescence and replication-independent senescence 6
1.3 The global relaxation of chromatin before senescence 7
1.3.1 The re-organization of nuclear architecture during aging 7
1.3.2 Retrotransposons derepression during aging 8
1.4 Potential involvement of DNMT3L on tightening up relaxed chromatin structure 10
1.4.1 Ectopic DNMT3L triggers repressive chromatin modulators assembly against RTEs 10
1.4.2 Transient ectopic DNMT3L expression in late-passage MEFs induces long-term cell proliferation 11
Hypothesis 14
Significance 16
Chapter 2 Experimental design 18
2.1 Specific aim 1: To characterize cells after transient DNMT3L induction 18
2.1.1 Transcriptome analysis for genes after DNMT3L-pulse 18
2.1.2 Estimation of carcinogenesis potential for DNMT3L-treated MEFs 18
2.2 Specific aim 2: To investigate the mechanisms driving DNMT3L-treated MEFs to halt senescence progression 19
2.2.1 Establishment of doxycycline-inducible DNMT3L expression system in MEFs 19
2.2.2 Candidate approach for dissecting some of the protein compositions from ectopic DNMT3L triggered repression complex 20
2.2.3 To test the potential enrichment of repressive epigenetic chromatin marks on gene reigns potentially affected after DNMT3L pulse 20
2.3 Specific aim 3: Extended studies for the potential of DNMT3L-induced halting senescence ability in other somatic tissues 23
2.3.1 To generate dox-inducible tag-Dnmt3l expression transgenic mice 24
2.3.2 To observe the effect of DNMT3L pulse in other cell lineages 25
Chapter 3 Results 29
3.1 DNMT3L-treated MEFs changes in morphology and transformed into various shape in different culture media 29
3.2 Transcripts in DNMT3L-treated MEFs are more enriched in proliferative-categories 31
3.3 The gene expression pattern of DNMT3L-induced long-term proliferative MEFs are more similar to primary MEFs 35
3.4 A pulse of ectopic DNMT3L delays premature senescence in mouse embryonic fibroblasts 36
3.5 The DNMT3L-induced halting senescence machinery might be partly due to maintenance of the nuclear architecture. 41
3.6 A pulse of ectopic DNMT3L enhances long-lasting H3K9me3 on ERVs 43
3.7 DNMT3L treatment partly reverses aberrant gene expression after prolonged passages of cultured MEFs 45
3.8 DNMT3L enhances the repression of derepressed PRC2-targeted genes in old MEFs and globally reinforces H3K27me3 markers 46
3.9 Ectopic DNMT3L interacts with SUZ12 52
3.10 Ectopic DNMT3L restores H3K27me3 in the promoters of derepressed PRC2 target genes 55
Chapter 4 Discussion and conclusion 61
Chapter 5 Material and methods 73
5.1 Animal care and cell culture 73
5.2 Transient ectopic DNMT3L expression 73
5.3 Microarray analysis 73
5.4 Immunocytochemistry (ICC) 74
5.5 Western blotting (WB) 74
5.6 Chromatin immunoprecipitation (ChIP) 75
5.7 Viral‐mediated gene transfer 76
5.8 Immunoprecipitation (IP) 77
5.9 Total RNA extraction and RT-qPCR 77
5.10 Statistics analysis and graphical representation 78
References 80
Appendix 97
Plasmid map- pTRE-3G-BI-tag-mDNMT3L-GFP 98
Plasmid map- pTRE-3G-BI-Luciferase-GFP 99
Plasmid map- pEF1alpha-Tet3G 100
TetOn-DNMT3L is well-controlled by doxycycline induction 102
Plasmid set for Dox-inducible-D3L TG mice production 103
Preparation of pronuclear DNA microinjection 104
DNA fragments quality for pronuclear DNA microinjection 106
Genotyping results of Dox-tag D3L transgenic mice 108
Inducible mDnmt3l expression ES cell for blastocyst injection 111
Plasmid map-pAS4.1w.Ppuro-aOn (inducible lentiviral) 113
Plasmid map- pAS4.1w.Ppuro-aOn (Fasta Vector Sequence) 115
Plasmid map-pAS4.1wRFP-Control.Ppuro-aOn 120
Plasmid map-pMD2.G and psPAX2 (lentiviral packing) 121
Sequence for cloning: tag-mDnmt3l 122
Sequence for cloning: GFP 124
Figure S1 The transcriptome of DNMT3L-treated prolonged proliferative MEFs is still most similar to primary MEFs among the over 1000 cell types analyzed primary MEFs 125
Figure S2 DNMT3L-treated MEFs are more proliferative 126
Figure S3 Pairwise Spearman correlation matrix of genes in young, old and DNMT3L-treated MEFs 129
Figure S4 Gene ontology analysis of genes affected by DNMT3L-pulse 130
Figure S5 Overlapped DEGs among young, old and DNMT3L-treated MEFs 131
Figure S6 Grouping of genes affected by DNMT3L-pulse 132
Figure S7 The expression level of the potential regulators of genes affected by DNMT3L-pulse among young, old and DNMT3L-treated MEFs 134
Figure S8 The Doxycycline-inducible-DNMT3L-MEF expression system 135
Figure S9 The expression level of the repressive regulators assembled by ectopic DNMT3L among young, old and DNMT3L-treated MEFs 137
Figure S10 The relative expression of fibrosis-related genes 138
Table S1 The TE transcripts in Dnmt3l+/+ and Dnmt3l-/- MEFs 139
Table S2 Primer list 142
Short report for strand-specific RNA library construction 143
TrueSeq Strand-specific RNA library preparation 144
Sample note for TrueSeq 153
Quality control (QC) for TrueSeq 154
NET-seq subcellular fractionation protocol 155
Cellular fractionation optimization (for NET-seq preparation) 161
gRNA design for dCas9-KRAB transcriptional repression 165
gRNA oligo list (designed with DAN 2.0) 172
Guide RNA cloning map: pLX-sgRNA 173
pLX-sgRNA cloning plan 174
pLentiCRISPRv2 sgRNA cloning plan 175
pLentoCRISPRv2 protocol 176
Guide sequencing cloning protocol 177
Representative scientific artwork 178
Publication list 180
dc.language.isoen
dc.subject跳躍子zh_TW
dc.subject表觀基因體zh_TW
dc.subject細胞衰老zh_TW
dc.subject類三號DNA甲基化因子zh_TW
dc.subjectchromatin surveillanceen
dc.subjectCellular senescenceen
dc.subjectepigeneticsen
dc.subjectDNMT3Len
dc.subjectPRC2en
dc.title類3號DNA甲基化酶監管表觀基因體抵抗細胞衰老
zh_TW
dc.titleDNMT3L Reinforces Chromatin Surveillance to Resist Senescence Progressionen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree博士
dc.contributor.author-orcid0000-0002-0247-0503
dc.contributor.advisor-orcid林劭品(0000-0003-3423-991X)
dc.contributor.oralexamcommittee蔡孟勲(Mong-Hsun Tsai),廖泰慶(Tai-Ching Liao),楊鎧鍵(Kai-Chien Yang),李宜靜(Yi-Ching Lee),張原翊(Yuan-I Chang)
dc.subject.keyword細胞衰老,表觀基因體,跳躍子,類三號DNA甲基化因子,zh_TW
dc.subject.keywordCellular senescence,epigenetics,DNMT3L,PRC2,chromatin surveillance,en
dc.relation.page180
dc.identifier.doi10.6342/NTU202003530
dc.rights.note有償授權
dc.date.accepted2020-08-17
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物科技研究所zh_TW
顯示於系所單位:生物科技研究所

文件中的檔案:
檔案 大小格式 
U0001-1508202017195300.pdf
  未授權公開取用
11.11 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved