Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67477
標題: 基於辨識錯誤模型之語音文件抽象標題產生
Abstractive Headline Generation for Spoken Documents with ASR Error Modeling
作者: Lang-Chi Yu
余朗祺
指導教授: 李琳山(Lin-Shan Lee)
關鍵字: 抽象摘要,標題產生,辨識錯誤模型,專注機制,編碼器-解碼器架構,
abstractive summarization,headline generation,ASR error modeling,attention mechanism,encoder-decoder architecture,
出版年 : 2017
學位: 碩士
摘要: 近年來網路語音資訊量迅速增長,遠超過人們消化吸收資訊的能力;此外,不像純文字文件,語音文件因為不易呈現在螢幕上而難以瀏覽與搜尋,所以語音文件的自動標題產生顯得更加重要。因此,本論文之主軸在探討數位語音文件之抽象自動標題產生(Abstractive Headline Generation for Spoken Documents)。首先,訓練深層模型都會需要大量的訓練語料,就本論文的語音文件自動標題產生而言,需要數以百萬計的語音文件-參考標題配對,這樣數量的語料在蒐集上是有很大困難的。相對而言,純文字文件-參考標題配對容易取得,因此本論文提出一套基於混淆矩陣(Confusion Matrix)與LG-加權有限狀態轉換器(LG-Weighted Finite State Transducer)的辨識錯誤模型以學習語音辨識結果中的辨識錯誤結構(ASR Error Structure),並用以將純文字文件轉換成模擬語音文件,作為深層自動標題產生模型之訓練資料。此外,傳統深層自動標題產生模型中會加入專注機制提升模型表現,但訓練資料中的辨識錯誤會影響專注機制的效果,因此,本論文將辨識錯誤模型與專注機制結合,藉由辨識信心分數(Confidence Score)修正專注權重(Attention Weights),以改善語音文件自動標題產生模型。最後,本論文也探討提出的模型架構在不同語言(中文、英文)和使用不同語音單位(詞、字、聲韻母、音節、音位)建構之辨識錯誤模型之表現。
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67477
DOI: 10.6342/NTU201702358
全文授權: 有償授權
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
2.42 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved