Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67472
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林書妍(Shu-Yen Lin)
dc.contributor.authorYa-Chu Hsuen
dc.contributor.author許雅筑zh_TW
dc.date.accessioned2021-06-17T01:33:43Z-
dc.date.available2023-08-16
dc.date.copyright2020-09-22
dc.date.issued2020
dc.date.submitted2020-08-17
dc.identifier.citation毛勝利、杜永臣、王孝宣、朱德蔚、高建昌、戴善書. 2005. 高溫脅迫下番茄體內 ABA 水準的變化及其對花粉萌發的影響.
王麗娟、張學英、徐金娥、張廣華、葛會波. 2009. 不同光質對草莓果實花青苷、酚類物質及類黃酮物質的影響. 河北農業大學學報32: 54-57.
行政院農委會. 2018. 農情報告資源網. 農情調查資訊查詢.<https://agr.afa.gov.tw/afa/afa_frame.jsp>. 2020/06/04.
李芃函、陳右人. 2010. 溫度與光週期對‘桃園三號'草苺花芽形成之影響. 國立臺灣大學園藝系碩士論文. 臺北.
阮素芬、熊同銓、黃子彬、陳右人. 2011. 桃園三號草莓花芽發生光週需求之探討.
林昭雄. 1981. 熱帶地區草莓發展及生產可行性之研究.中華農業研究30: 173-185.
胡可、韓科廳、戴思蘭. 2010. 環境因數調控植物花青素苷合成及呈色的機理. 植物學報45: 307-318.
徐美紅、張燕霞、陸文玉、王曉磊. 2015. 白果草莓引進試種初報. 上海農業科技: 87-87.
張訓堯、宋妤. 2013. 草莓‘桃園一號'及‘香水’品種香氣成分之比較. 苗栗區農業改良場研究彙報3: 25-32.
葛翠蓮、黃春輝、徐小彪. 2012. 果實花青素生物合成研究進展.
遊韻馨. 2019. 水果圖鑑. 台中市:晨星出版.
Aaby, K., D. Ekeberg and G. Skrede. 2007. Characterization of phenolic compounds in strawberry (Fragaria× ananassa) fruits by different HPLC detectors and contribution of individual compounds to total antioxidant capacity. J. Agric. Food Chem. 55: 4395-4406.
Albert, N.W., D.H. Lewis, H. Zhang, L.J. Irving, P.E. Jameson and K.M. Davies. 2009. Light-induced vegetative anthocyanin pigmentation in Petunia. J. Exp. Bot. 60: 2191-2202.
Bradford, E., J.F. Hancock and R.M. Warner. 2010. Interactions of temperature and photoperiod determine expression of repeat flowering in strawberry. J. Am. Soc. Hort. Sci. 135: 102-107.
Calderon, A., E. Garcia-Florenciano, R. Munoz and A. Ros Barceló. 1992. Gamay grapevine peroxidase: its role in vacuolar anthocyani (di) n degradation. Vitis 31: 139-147.
Cheel, J., C. Theoduloz, J.A. Rodríguez, P.D. Caligari and G. Schmeda-Hirschmann. 2007. Free radical scavenging activity and phenolic content in achenes and thalamus from Fragaria chiloensis ssp. chiloensis, F. vesca and F. x ananassa cv. Chandler. Food Chem. 102: 36-44.
Chen, D.Q., Z.Y. Li, R.C. Pan and X.J. Wang. 2006. Anthocyanin accumulation mediated by blue light and cytokinin in Arabidopsis seedlings. J Integr. Plant Biol. 48: 420-425.
Choi, H.G., B.Y. Moon and N.J. Kang. 2015. Effects of LED light on the production of strawberry during cultivation in a plastic greenhouse and in a growth chamber. Sci. Horticulturae 189: 22-31.
Cominelli, E., G. Gusmaroli, D. Allegra, M. Galbiati, H.K. Wade, G.I. Jenkins and C. Tonelli. 2008. Expression analysis of anthocyanin regulatory genes in response to different light qualities in Arabidopsis thaliana. J. Plant Physiol. 165: 886-894.
Da Silva, F.L., M.T. Escribano-Bailón, J.J.P. Alonso, J.C. Rivas-Gonzalo and C. Santos-Buelga. 2007. Anthocyanin pigments in strawberry. LWT-Food Sci. and Technol. 40: 374-382.
Dooner, H.K., T.P. Robbins and R.A. Jorgensen. 1991. Genetic and developmental control of anthocyanin biosynthesis. Annu. Rev. Genet. 25: 173-199.
Garrido-Bigotes, A., P.M. Figueroa and C.R. Figueroa. 2018. Jasmonate metabolism and its relationship with abscisic acid during strawberry fruit development and ripening. J. Plant Growth Regul. 37: 101-113.
Guerrero-Chavez, Guillermo, Matteo Scampicchio, and Carlo Andreotti. 2015. Influence of the site altitude on strawberry phenolic composition and quality. Sci. Hort. 192: 21-28.
Hahn, E. J., T. Kozai and K. Y. Paek. 2000. Blue and red light-emitting diodes with or without sucrose and ventilation affect in vitro Growth of Rehmannia glutinosa plantlets. J. of Plant Biol. 43: 247-250.
Hancock, J. F. 1999. Strawberries. CABI Publishing, Wallingford, UK.
Harborne, J. B. and C.A. Williams. 2000. Advances in flavonoid research since 1992. Phytochemistry 55: 481-504.
Hatier, J.H. and K.S. Gould. 2008. Anthocyanin function in vegetative organs. Anthocyanins. Springer. p. :1-19.
Hidaka, K., A. Okamoto, T. Araki, Y. Miyoshi, K. Dan, H. Imamura, M. kitano, K. Sameshima and M. Okimura. 2014. Effect of photoperiod of supplemental lighting with light-emitting diodes on growth and yield of strawberry. Environ. Control. Biol. 52: 63-71.
Hidaka, K., K. Dan, H. Imamura and T. Takayama. 2017. Crown-cooling treatment induces earlier flower bud differentiation of strawberry under high air temperatures. Environ. Control. Biol. 55: 21-27.
Hidaka, K., K. Dan, H. Imamura, T. Takayama, K. Sameshima and M. Okimura. 2015. Variety comparison of effect of supplemental lighting with LED on growth and yield in forcing culture of strawberry. Environ. Control Biol. 53: 135-143.
Hidaka, K., K. Dan, H. Imamura, Y. Miyoshi, T. Takayama, K. Sameshima, M. Kitano and M. Okimura. 2013. Effect of supplemental lighting from different light sources on growth and yield of strawberry. Environ. Control. Biol. 51: 41-47.
Honda, C., H. Bessho, M. Murai, H. Iwanami, S. Moriya, K. Abe, M. Wada, Y. Moriya-Tanaka, H. Hayama and M. Tatsuki. 2014. Effect of temperature on anthocyanin synthesis and ethylene production in the fruit of early-and medium-maturing apple cultivars during ripening stages. Hort. Sci. 49: 1510-1517.
Izhar, S. 1997. Infra short-day strawberry types. Acta Hort. 439: 155-160.
Jia, H. F., Y. M. Chai, C. L. Li, D. Lu, J. J. Luo, L. Qin and Y. Y. Shen. 2011. Abscisic acid plays an important role in the regulation of strawberry fruit ripening. Plant Physiol. 157: 188-199.
Jiang, Y. and D.C. Joyce. 2003. ABA effects on ethylene production, PAL activity, anthocyanin and phenolic contents of strawberry fruit. Plant Growth Regulation 39: 171-174.
Kadomura-Ishikawa, Y., K. Miyawaki, S. Noji and A. Takahashi. 2013. Phototropin 2 is involved in blue light-induced anthocyanin accumulation in Fragaria x ananassa fruits. J. Plant Res. 126: 847-857.
Kumakura, H. and Y. Shishido. 1994. The effect of daytime, nighttime, and mean diurnal temperatures on the growth of 'Morioka-16' strawberry fruit and plants. J. of the Japanese Society for Hort. Sci. 62: 827-832.
Kurata, H., A. Mochizuki, N. Okuda, M. Seki and S. Furusaki. 2000. Intermittent light irradiation with second-or hour-scale periods controls anthocyanin production by strawberry cells. Enzyme Microb. Technol. 26: 621-629.
Lea, U.S., R. Slimestad, P. Smedvig and C. Lillo. 2007. Nitrogen deficiency enhances expression of specific MYB and bHLH transcription factors and accumulation of end products in the flavonoid pathway. Planta. 225: 1245-1253.
Ledesma, N., M. Nakata and N. Sugiyama. 2008. Effect of high temperature stress on the reproductive growth of strawberry cvs. ‘Nyoho’ and ‘Toyonoka’. Sci. Hort. 116: 186-193.
Li, D., Z. Luo, W. Mou, Y. Wang, T. Ying and L. Mao. 2014. ABA and UV-C effects on quality, antioxidant capacity and anthocyanin contents of strawberry fruit (Fragaria × ananassa Duch.). Postharvest Biol. and Technol. 90: 56-62.
Lin‐Wang, K., D. Micheletti, J. Palmer, R. Volz, L. Lozano, R. Espley, R.P. Hellens, D. Chagne, D.D. Rowan and M. Troggio. 2011. High temperature reduces apple fruit colour via modulation of the anthocyanin regulatory complex. Plant, Cell Environ. 34: 1176-1190.
Loreti, E., G. Povero, G. Novi, C. Solfanelli, A. Alpi and P. Perata. 2008. Gibberellins, jasmonate and abscisic acid modulate the sucrose‐induced expression of anthocyanin biosynthetic genes in Arabidopsis. New Phytol. 179: 1004-1016.
Morales-Quintana, L., and P. Ramos. 2019. Chilean strawberry (Fragaria chiloensis): An integrative and comprehensive review. Food Res. Int. 119: 769.
Mori, K., N. Goto-Yamamoto, M. Kitayama and K. Hashizume. 2007. Loss of anthocyanins in red-wine grape under high temperature. J. Exp. Bot. 58: 1935-1945.
Mori, K., S. Sugaya and H. Gemma. 2005. Decreased anthocyanin biosynthesis in grape berries grown under elevated night temperature condition. Sci. Hort. 105: 319-330.
Muñoz, C., T. Hoffmann, N.M. Escobar, F. Ludemann, M.A. Botella, V. Valpuesta and W. Schwab. 2010. The strawberry fruit Fra a allergen functions in flavonoid biosynthesis. Physiol. Mol. Plant Pathol. 3: 113-124.
Nhut, D.T., T. Takamura, H. Watanabe, K. Okamoto and M. Tanaka. 2003. Responses of strawberry plantlets cultured in vitro under superbright red and blue light-emitting diodes (LEDs). Plant Cell, Tissue Organ Cult. 73: 43-52.
Noguchi, Y. and Yamada, T. 2014. Flower bud initiation of a decaploid strawberry ‘Tokun’by night chilling and short day treatment. Acta. Hortic. 1049: 907-910.
Salvatierra, A., P. Pimentel, M.A. Moya Leon and R. Herrera. 2013. Increased accumulation of anthocyanins in Fragaria chiloensis fruits by transient suppression of FcMYB1 gene. Phytochemistry 90: 25-36.
Salvatierra, A., P. Pimentel, M.A. Moya Leon, P.D. Caligari and R. Herrera. 2010. Comparison of transcriptional profiles of flavonoid genes and anthocyanin contents during fruit development of two botanical forms of Fragaria chiloensis ssp. chiloensis. Phytochemistry 71: 1839-1847.
Saud, G., F. Carbone, G. Perrotta, C.R. Figueroa, M. Moya, R. Herrera, J.B. Retamales, B. Carrasco, J. Cheel and G. Schmeda-Hirschmann. 2009. Transcript profiling suggests transcriptional repression of the flavonoid pathway in the white-fruited Chilean strawberry, Fragaria chiloensis (L.) Mill. Genet. Res. Crop Evol. 56: 895.
Saure, M.C. 1990. External control of anthocyanin formation in apple. Sci. Hort. 42: 181-218.
Shen, X., K. Zhao, L. Liu, K. Zhang, H. Yuan, X. Liao, Q. Wang, X. Guo, F. Li and T. Li. 2014. A role for PacMYBA in ABA-regulated anthocyanin biosynthesis in red-colored sweet cherry cv. Hong Deng (Prunus avium L.). Plant Cell Physiol. 55: 862-880.
Shi, L., S. Cao, W. Chen and Z. Yang. 2014. Blue light induced anthocyanin accumulation and expression of associated genes in Chinese bayberry fruit. Sci. Hort. 179: 98-102.
Simirgiotis, M.J. and G. Schmeda-Hirschmann. 2010. Determination of phenolic composition and antioxidant activity in fruits, rhizomes and leaves of the white strawberry (Fragaria chiloensis spp. chiloensis form chiloensis) using HPLC-DAD–ESI-MS and free radical quenching techniques. J. Food Compos. Anal. 23: 545-553.
Simirgiotis, M.J., C. Theoduloz, P.D. Caligari and G. Schmeda-Hirschmann. 2009. Comparison of phenolic composition and antioxidant properties of two native Chilean and one domestic strawberry genotypes. Food Chem. 113: 377-385.
Surh, Y. J. 2003. Cancer chemoprevention with dietary phytochemicals. Nature Reviews Cancer 3: 768-780.
Ubi, B.E., C. Honda, H. Bessho, S. Kondo, M. Wada, S. Kobayashi and T. Moriguchi. 2006. Expression analysis of anthocyanin biosynthetic genes in apple skin: effect of UV-B and temperature. Plant Sci. 170: 571-578.
Ulrich, D. and K. Olbricht. 2013. Diversity of volatile patterns in sixteen Fragaria vesca L. accessions in comparison to cultivars of Fragaria× ananassa. J. Appl. Bot. Food Qual. 86: 1.
Wan, C., L. Mi, B. Chen, J. Li, H. Huo, J. Xu and X. Chen. 2018. Effects of nitrogen during nursery stage on flower bud differentiation and early harvest after transplanting in strawberry. Braz. J. Botany 41: 1-10.
Xie, X. B., S. Li, R. F. Zhang, J. Zhao, Y. C. Chen, Q. Zhao, Y. X. Yao, C. X. You, X. S. Zhang and Y. J. Hao. 2012. The bHLH transcription factor MdbHLH3 promotes anthocyanin accumulation and fruit colouration in response to low temperature in apples. Plant, Cell Environ. 35: 1884-1897.
Xu, F., S. Cao, L. Shi, W. Chen, X. Su and Z. Yang. 2014. Blue light irradiation affects anthocyanin content and enzyme activities involved in postharvest strawberry fruit. J. Agric. Food Chem. 62: 4778-4783.
Yu, B., D. Zhang, C. Huang, M. Qian, X. Zheng, Y. Teng, J. Su and Q. Shu. 2012. Isolation of anthocyanin biosynthetic genes in red Chinese sand pear (Pyrus pyrifolia Nakai) and their expression as affected by organ/tissue, cultivar, bagging and fruit side. Sci. Hort. 136: 29-37.
Zhang, Y., W. Li, Y. Dou, J. Zhang, G. Jiang, L. Miao, G. Han, Y. Liu, H. Li and Z. Zhang. 2015. Transcript quantification by RNA-Seq reveals differentially expressed genes in the red and yellow fruits of Fragaria vesca. PloS one 10: e0144356.
Zhang, Y., Y. Liu, W. Hu, B. Sun, Q. Chen and H. Tang. 2018. Anthocyanin accumulation and related gene expression affected by low temperature during strawberry coloration. Acta physiol. plant. 40: 192.
Zhou, L. L., M. Z. Shi and D. Y. Xie. 2012. Regulation of anthocyanin biosynthesis by nitrogen in TTG1–GL3/TT8–PAP1-programmed red cells of Arabidopsis thaliana. Planta 236: 825-837.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67472-
dc.description.abstract白草莓(Fragaria × aananassa Duch.)果實表面呈現白色或淺粉色,而果肉內部則呈白色,與商業紅草莓有顯著區別。於台灣露天栽培時,白草莓果實會有過度呈色及著色不均的情形。本研究針對環境因子對白草莓生長及果實色澤的影響,分為兩部分,試驗一為比較栽培於台北及台中兩地區之白草莓植株生育差異,試驗二及三則以調控的光質及溫度組合處理,探討兩因子對白草莓植株生育及果實色澤的影響。試驗材料為三果色不同之白草莓品系,白果‘芎林3號’、粉白果‘長治1號’及橘紅果‘長治2號’,以7吋盆苗進行試驗,試驗一每地區10株重複,試驗二及三每處理6株重複。
各品系白草莓以栽植於台中的植株營養生長較佳,有較多葉片數及花序累積量,於台北生長之植株葉柄長及葉面積較長。在果實色澤方面,以栽植於台北的果實a*值顯著較低,白果‘芎林3號’及粉紅果‘長治1號’的果實無明顯轉色。台中地區果實的總花青素含量顯著高於台北地區果實約3倍。因此,白草莓以栽植於台北地區較能維持白果之特性。
光質及溫度組合處理試驗中,分別以四種光質:紅光(654 nm)、藍光(453 nm)、紅藍混光(R:B = 7:3)及白光(430-680 nm),組合兩種日夜溫22/18oC及28/25oC,於植株生長至五六片葉開始連續處理18週。植株營養生長表現,以紅光處理植株之平均葉柄長最長、葉面積最大,而藍光處理則使葉柄短縮且葉面積較小。溫度對植株生長的影響,以28/25oC的植株葉柄長較長。果實色澤在22/18oC下,各品系白草莓皆以紅光照射的果實最無轉色,其a*值為0.8~2.7,果實總花青素含量63.4~133.7μg/g,顯著低於藍光處理之果實(a*值5.6~6.0、總花青素含量227.7~276.7μg/g)。高溫影響草莓開花及著果,各品系中僅‘長治2號’可在28/25oC下正常產果。以橘紅果‘長治2號’與紅果‘豐香’進行相同的光質及溫度組合處理,光質及溫度不影響‘豐香’果實呈色及總花青素含量,在各種處理下的果實皆為紅色。‘長治2號’於28/25oC下,果色較紅,果實總花青素含量為158.3μg/g,亦較22/18oC的果實總花青素含量為高。同樣於22/18oC下,以紅光處理下的‘長治2號’,果實總花青素含量為112.1μg/g,而藍光下的果實總花青素含量則為201.2 μg/g,顯示藍光對白草莓果實花青素生合成誘導效果較顯著。
白草莓以果色白為其特點,為了維持白草莓果實特色及價值,建議栽培地區以北台灣較中台灣適合;若於可控環境下栽培,則建議以紅光及低溫處理,較能維持白草莓的果實品質並維持白果色的特徵。
zh_TW
dc.description.abstractWhite strawberry (Fragaria × ananassa Duch.) has white or pink skin color of the fruit, while the color of flesh is white, which is significantly different from the commercial red strawberry. The white strawberry fruit would be excessive-colored and unevenly colored when cultivated open field in Taiwan. This experiment was divided into two aspects for the influence of environmental factors on the growth and fruit color of white strawberry, the expetiment 1 was to compare the effects of white strawberries cultivated in Taipei and Taichung location. The expetiment 2 and 3 were about light quality and temperature treatment to discuss the growth of white strawberry and the coloration of fruits. The experimental materials were three white strawberry varieties with different fruit colors, white-colored ‘Chiung-lin No.3’, pink-colored 'Chang-zhi No.1 ' and orange-colored ‘Chang-zhi No.2’. The experiment was conducted with 7-inch pot seedlings. The experiment 1 repeated 10 plants for each location, and experiments 2 and 3 repeated 6 plants for each treatment.
The three varieties of white strawberry cultivated in Taichung had better nutritional growth, with more leaf number and inflorescence accumulation. While the plants cultivated in Taipei had larger petioles and leaf area. In terms of fruit color, the a* value of the fruits cultivated in Taipei was significantly lower, and the fruits of ‘Chiung-lin No.3’ and 'Chang-zhi No.1 ' had no significant coloration. The anthocyanin content of the fruits in Taichung was significantly higher than that in Taipei by about three times. Therefore, the three varieties of white strawberry planted in Taipei could be better to maintain the characteristics of the fruit.
The light quality and temperature treatment,utilizing four light quality, including red light (654 nm), blue light (453 nm), red-blue light (R:B = 7:3) and white light (430-680 nm) were combined 22/18oC and 28/25oC of temperatures treatment. When the plants grew to five or six leaves, it was treated continuously for 18 weeks. The vegetative growth of the plant, the petiole length and leaf area with red light treament was higher than other treatments. While the blue light treatment which would shorten the petiole length and reduce the leaf area. With temperature treatment, the petiole length at 28/25oC was longer. The the color of the fruit, at 22/18oC, three varieties of white strawberries had no significant coloration under red light treatment. The a* value of red light treatment of fruits was 0.8~2.7 and the total anthocyanin content was 63.4~133.7μg/g, which was significantly lower than blue light treatment (the a* value was 5.6~6.0 and the total anthocyanin content was 227.7~276.7μg/g). The three varieties of white strawberries, merely ‘Chang-zhi No.2’ could produce fruits normally at 28/25oC. With 'Changzhi No. 2' and ‘Fengxiang’red strawberries for the same light quality and temperature treatment, the light quality and temperature have no significant difference in color and anthocyanin content of 'Fengxiang’, which color of fruits were red under various treatments. The ‘Chang-zhi No.2’ had a reddish skin color of the fruit at 28/25oC, with an anthocyanin content of 158.3μg/g, which was also higher than that at 22/18oC. At 22/18oC and red light treatment, the coloration of fruit was lighter in red, which anthocyanin content was 112.1 μg/g. The anthocyanin content under blue light treatment was 201.2 μg/g, indicating that blue light has a significant effect on the induction of anthocyanin biosynthesis of white strawberry.
White strawberry is characterized by white fruit color. In order to maintain the characteristics and value, it is recommended that cultivating the white strawberries in north of Taiwan is more suitable than medium of Taiwan. If cultivated in controlled environment, it is recommended to use red light and low temperature treatment to maintain the fruit quality and the characteristics of white peel color of fruits.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:33:43Z (GMT). No. of bitstreams: 1
U0001-1508202018225800.pdf: 3053836 bytes, checksum: 8570bd21e5aa05f54eb8cb685c8060f5 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents致謝..................................................................i
中文摘要 .............................................................ii
Abstract.............................................................iv
前言..................................................................1
文獻回顧 ..............................................................2
一. 白草莓概述.....................................................2
二. 草莓果實呈色機制................................................2
三. 環境因子對草莓生長及果實發育之影響................................3
(一)光強度..............................................................3
(二)光週期..............................................................4
(三)光質................................................................5
(四)溫度................................................................5
四. 花青素..........................................................6
(一)花青素生合成反應鏈...................................................7
(二)花青素生合成調控基因.................................................8
(三)白草莓果實花青素結構.................................................8
(四)影響花青素生合成累積之因子............................................9
材料與方法.............................................................13
結果...................................................................22
試驗一、栽培地區對白草莓植株生長及果實發育之影響...........................22
試驗二、光質及溫度組合處理對三個白草莓品系植株生長及果實色澤之影響...........49
試驗三、光質及溫度組合處理對‘長治2號’及‘豐香’植株生長及果實色澤之影響........73
討論....................................................................94
結語...................................................................101
參考文獻 ...............................................................103
dc.language.isozh-TW
dc.subjectDPPH自由基清除能力zh_TW
dc.subject總酚類化合物zh_TW
dc.subject花青素生合成zh_TW
dc.subject栽培地區zh_TW
dc.subjectcultivated locationen
dc.subjectanthocyain biosynthesisen
dc.subjectphenolics compounden
dc.subjectDPPH free radical scavenging abilityen
dc.title光質及溫度對白草莓植株生長及果實色澤之影響zh_TW
dc.titleEffects of light quality and temperature on plant growth and fruit color in white strawberryen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee阮素芬(Su-Feng Roan),黃盟元(Meng-Yuan Huang),陳柏安(Po-An Chen)
dc.subject.keyword栽培地區,花青素生合成,總酚類化合物,DPPH自由基清除能力,zh_TW
dc.subject.keywordcultivated location,anthocyain biosynthesis,phenolics compound,DPPH free radical scavenging ability,en
dc.relation.page109
dc.identifier.doi10.6342/NTU202003533
dc.rights.note有償授權
dc.date.accepted2020-08-18
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝暨景觀學系zh_TW
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
U0001-1508202018225800.pdf
  未授權公開取用
2.98 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved