請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67458
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 潘永寧(Yung-Ning Pan) | |
dc.contributor.author | Yu-Hao Kuo | en |
dc.contributor.author | 郭育豪 | zh_TW |
dc.date.accessioned | 2021-06-17T01:33:07Z | - |
dc.date.available | 2017-08-11 | |
dc.date.copyright | 2017-08-11 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-08-02 | |
dc.identifier.citation | [1]J.R. Davis, Ed., ASM Specialty Handbook: Cast Iron, ASM International, pp.54-79, 1996.
[2]William F. Smith, Structure and Properties of Engineering Alloys, 2nd ed., pp.353-363, 1993. [3]馮之敬,製造工程與技術原理,清華大學出版社,2009。 [4]D. Venugopalan and A. Alagarsamy, “Effects of alloy additions on the microstructure and mechanical properties of commercial ductile iron,” AFS Trans., Vol. 98, pp. 395-400, 1990. [5]Urko de la Torre, Jacques Lacaze, and Jon Sertucha, “Chunky graphite formation in ductile cast irons: effect of silicon, carbon and rare earths,” International Journal of Materials Research: Vol. 107, No. 11, pp. 1041-1050, 2016. [6]黃振賢,機械材料,修訂二版,新文晶開發出版股份有限公司,2003。 [7]潘永寧,“鑄鐵的石墨形狀及成型理論之探討(一)”,鑄工44期,pp. 28-45,1985。 [8]潘永寧,“鑄鐵的石墨形狀及成型理論之探討(二)”,鑄工44期,pp. 28-45,1985。 [9]R.W. Heine, “Carbon, silicon, carbon equivalent, solidification and thermal analysis relationship in gray and ductile cast iron,” AFS Trans., Vol. 81, pp.462, 1973. [10]ASTM A247, “Standard Test Method for Evaluating the Microstructure of Graphite in Iron Casting,” ASTM International. [11]何祚芝,蠕墨鑄鐵理論與實踐,機械工業出版社,1985。 [12]林凱偉,“冶金及製程參數對於縮墨鑄鐵生產之影響研究”,國立台灣大學機械工程學研究所碩士論文,2016。 [13]S. I. Karsay and R. D. Schelleng, “Heavy ductile iron castings composition effect on graphite structure,” AFS Trans., Vol. 69, pp.672-679, 1961. [14]J. F. Wallace, P. Hu, H. Q. Su, R. J. Warrick, and L. R. Jenkins, “Influence of foundry variables on nodule count in ductile iron,” AFS Trans., Vol. 95, pp. 813-834, 1985. [15]ISO 945-1:2008, “Microstructure of Cast Irons -- Part 1: Graphite Classification by Visual Analysis,” International Organization for Standard. [16]GB/T 9441:1988, “球墨鑄鐵金相檢驗”,中華人民共和國國家標準。 [17]JIS G5502:2001, “球状黒鉛鋳鉄品,” Japanese Standards Association. [18]洪曉先、楊力、孫國雄, “國家標準《球狀石墨金相檢驗》解讀”,鑄造標準第7期,2013。 [19]球墨鑄鐵手冊,中華民國鑄造學會,1992。 [20]R. W. Heine, “Influence of floatation on some foundry properties of ductile iron,” AFS Trans., Vol. 99, pp. 159-164, 1991. [21]G. X. Sun and C. R. Loper Jr., “Graphite flotation in cast iron,” AFS Trans., Vol. 91, pp. 841-854, 1984. [22]ASM Handbook, ASM International, pp. 812-834, 2008. [23]林其加,“應用於大型風力發電機之厚壁球墨鑄件之技術研發”,國立台灣大學機械工程學研究所碩士論文,2013。 [24]M. Ashraf Sheikh, “Effect of nickel on tensile strength of ductile iron,” MIMT 2010, 2010. [25]B. P. Mahto, “Characterization of ductile iron through fractographic study,” M.S. Thesis, National Institute of Technology, Rourkela, India, 2014. [26]S. K. Yu and C. R. Loper Jr., “The effect of molybdenum, copper, and nickel on the pearlitic and martensitic hardenability of ductile cast irons,” AFS Trans., Vol. 96, pp.811-821, 1988. [27]R. R. Kust and C. R. Loper Jr., “The production of heavy section ductile iron,” AFS Trans., Vol. 76, pp. 540-546, 1968. [28]M. H. Mulazimoglu, Y. M. Yang, and J. F. Wallace, “Solidification studies of spiking and large-small nodule formation in ductile iron produced by the in-the-mold process,” AFS Trans., Vol. 93, pp.627-650, 1985. [29]蘇子銘,“耐低溫衝擊性能之後壁球墨鑄鐵研發”,國立台灣大學機械工程研究所碩士論文,2011。 [30]A. G. Fuller and T. N. Blackman, “Effects of composition and foundry process variables on graphite flotation in hypereutectic ductile iron,” AFS Trans., Vol. 94, pp. 841-854, 1984. [31]H. W. Hoover Jr., “A literature survey on degenerate graphite in heavy section ductile iron,” AFS Trans., Vol. 94, pp. 601-608, 1986. [32]R. Källbom, K. Hamberg, and L.E. Björkegren, “Chunky graphite in ductile iron castings,” in 67th World Foundry Congress, pp. 1071-1080, 2006. [33]Hideo Nakae, Masayuki Fukami, Takayuki Kitazawa, and Ying Zou, “Influence of Si, Ce, Sb and Sn on chunky graphite formation,” in 69th World Foundry Congress, 2010. [34]陳俊益,“鉍和銻對於厚件球墨鑄鐵顯微組織之影響”, 國立台灣大學機械工程學研究所碩士論文,1995。 [35]駱新田,“微量元素鉛、鉍、銻及鈰對於厚件球墨鑄鐵顯微組織及機械性質之影響”,國立台灣大學機械工程學研究所碩士論文,1996。 [36]R. D. Forrest, “Some factors affecting the mechanical properties ductile iron”, pp. 23-37, 1989. [37]J. Pokluda and P. Šandera, Micromechanisms of Fracture and Fatigue, Springer, 2010. [38]莊東漢,材料破損分析,五南圖書出版公司,2007。 [39]ASTM A536, “Standard Specification for Ductile Iron Castings,” ASTM International. [40]EN 1563:1997, “Founding - Spheroidal Graphite Cast Irons,” European Standard. [41]ISO 1083:2004, “Spheroidal Graphite Cast Irons — Classification,” International Organization for Standard. [42]CNS 2869 B2118,“球狀石墨鑄鐵件”,中華民國國家標準。 [43]EN 1563:2012, “Founding - Spheroidal Graphite Cast Irons,” European Standard. [44]W. Siefer and K.Orths, “Evaluation of ductile iron in terms of feasible properties of the material,” AFS Trans., Vol. 78, pp. 382-387, 1970. [45]The Sorelmetal Book of Ductile Iron, Rio Tinto Iron & Titanium, 2004. [46]ASTM E8, “Standard Test Methods for Tension Testing of Metallic Materials,” ASTM International. [47]CNS 2111-1996,“金屬材料拉伸試驗法”,中華民國國家標準。 [48]ASTM E10, “Standard Test Method for Brinell Hardness of Metallic Materials,” ASTM International. [49]ASTM E92, “Standard Test Method for Vickers Hardness and Knoop Hardness of Metallic Materials,” ASTM International. [50]ASTM A327/A327M, “Standard Test Methods for Impact Testing of Cast Irons,” ASTM International. [51]ASTM E23-07, “Standard Test Methods for Notched Bar Impact Testing of Metallic Materials,” ASTM International. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67458 | - |
dc.description.abstract | 本研究旨在探討厚壁球墨鑄鐵之鑄造技術並提升其機械性質以達到實務上之應用。實驗共可分為兩大部分,第一部分係探討鎳(Ni)元素對於球墨鑄鐵機械性質(抗拉強度、降伏強度、伸長率、硬度、低溫衝擊值)及顯微組織(球化率、球墨數目、肥粒鐵含量、波來鐵含量)之影響,並以迴歸分析方法建立化學成分、顯微組織與機械性質之相關性迴歸方程式;第二部分為開發及建立貯存用過核子燃料之球墨鑄鐵芯最佳鑄造技術,藉由合金設計及控制製程參數使得鑄鐵芯實體鑄件之機械性質可達到規範EN-GJS-400-15U之要求(抗拉強度>370MPa、降伏強度>240MPa及伸長率>7%),針對鑄造過程中各種可能造成瑕疵的原因加以探討,並尋求解決策略。
第一部分研究結果顯示,鎳元素的添加有助於提高球墨鑄鐵的抗拉強度以及降伏強度,同時鎳亦具有強化及硬化肥粒鐵相之作用,使球墨鑄鐵的硬度也獲得提升。然而,鎳雖具有降低轉脆溫度之功效,但容易受其他因素如:矽、錳含量、基地波來鐵比例、球墨數目之影響,使添加鎳的效果不顯著。本部分研究亦建立鎳添加量、基地波來鐵比例及球墨數目等參數與衝擊值之關係,迴歸分析方程式顯示欲生產耐低溫衝擊之球墨鑄鐵,除了添加鎳元素之外,還需降低基地波來鐵相之比例及降低球墨數目。 第二部分研究結果顯示,縮尺小型球墨鑄鐵芯第一次測試結果不合格的主因為實體試樣之顯微組織中出現過多的不規則石墨以及塊狀石墨,會有此現象發生是因為稀土元素鈰(Ce)在厚壁鑄件較長的凝固冷卻時間下晶出不良的塊狀石墨組織,進而導致機械性質大幅下降。藉由添加適量的銻(Sb)可中和鈰(Ce)之負面影響,採用此改善對策後進行縮尺小型球墨鑄鐵芯第二次測試,其石墨組織中之塊狀石墨大幅減少,且機械性質測試結果可符合規範要求。接著以此兩次澆鑄及測試作業之經驗,進一步加大鑄件之尺寸,進行縮尺型球墨鑄鐵芯之澆鑄測試作業,測試結果亦可符合規範要求。本部分研究亦計算各爐次試樣之品質指標並與規範值比較,作為另一種檢定鑄件品質優劣的方法。 | zh_TW |
dc.description.abstract | The primary purposes of this research are two folds: (1) To investigate the effect of Ni on the mechanical properties (tensile strength, yield strength, elongation, hardness, and low-temperature impact value) and microstructures (nodularity, nodule counts and percent pearlite) of heavy-section ductile iron. Based on the experimental results, multiple regression analyses were performed to correlate the mechanical properties with chemical composition and microstructure. (2) To establish the optimal conditions for the production of ductile cast iron inserts for the storage of the spent nuclear fuels through alloy design and manufacturing process control. Furthermore, in this study, the microstructure that occurred in the castings were analyzed and schemes were proposed to eliminate those abnormities, aiming to conform with the specification of EN-GJS-400-15U (T.S.>370MPa, Y.S.>240MPa and El.>7%) for the ductile cast iron inserts.
The results of the first part indicate that the addition of Ni to the ductile cast irons can enhance the mechanical properties, i.e., as tensile strength, yield strength, microhardnesses of both ferrite and pearlite phases. However, the effect is affected by other factors, such as the Si and Mn contents, the pearlite (or ferrite) percentage, and the nodule count. The multiple regression analyses were performed to correlate the impact value at various temperatures with the selected metallurgical parameters (percent Ni, percent pearlite, and nodule counts). The results show that the impact value increase with increasing Ni content, and decreasing the percent pearlite and nodule counts. Regarding the trial tests of the reduced-length small scale ductile cast iron inserts, the results of the first attempt fail to conform with the specification due to the presence of chunky graphite in the microstructure, which causes a significant drop in tensile properties. The presence of chunky graphite can be attributed to the excessive amount of Cerium (Ce), especially in heavy section castings. To counteract the adverse effect of Ce, an appropriate amount of antimony (Sb) was added in the second trial. The results of the second trial of the reduced-length small scale ductile cast iron insert can meet the requirement of the specification. Finally, the reduced-length ductile cast iron insert was poured based upon the optimal casting conditions obtained from the first two trials for the reduced-length small scale ductile cast iron inserts. Again, the results fulfill the specification. In addition, the quality indices of all the specimens obtained from the three ductile cast iron inserts, together with the standard grades ductile cast iron, were calculated and compared. The comparisons in quality index can serve as basis for the evaluation of casting performance. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T01:33:07Z (GMT). No. of bitstreams: 1 ntu-106-R04522713-1.pdf: 7799252 bytes, checksum: 5dd8fff5a7a9f0eb5e9ac78c05138945 (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii 目錄 v LIST OF FIGURES viii LIST OF TABLES xiii 第 1 章 緒論 1 第 2 章 文獻探討 2 2.1 穩定系統與準穩定系統 2 2.2 石墨之型態 2 2.3 球狀石墨鑄鐵 3 2.3.1 顯微組織 3 2.3.2 機械性質 3 2.3.3 球墨鑄鐵的製造方法 4 2.3.4 球化率的計算 4 2.4 合金成分對厚壁球墨鑄鐵之影響 6 2.4.1 主要元素 6 2.4.2 球化元素 7 2.4.3 合金元素 7 2.5 製程參數對厚壁球墨鑄鐵之影響 8 2.6 塊狀石墨 8 2.7 衝擊韌性 9 2.7.1 延性破壞與脆性破壞 9 2.8 現行球墨鑄鐵規範 10 2.9 品質指標 11 第 3 章 研究方法與步驟 28 3.1 研究目的 28 3.2 實驗架構 28 3.3 實驗方法 28 3.3.1 第一部分─含鎳球墨鑄鐵 28 3.3.2 第二部分─球墨鑄鐵芯 28 3.4 鑄造程序 29 3.4.1 模型製作與造模材料 29 3.4.2 球化、接種及二次(瞬間)接種處理 29 3.5 分析試片取樣 29 3.5.1 第一部分─含鎳球墨鑄鐵 29 3.5.2 第二部分─球墨鑄鐵芯 29 3.6 機械性質測試 30 3.6.1 拉伸試驗 30 3.6.2 硬度試驗 30 3.6.3 衝擊試驗 31 3.7 金相組織分析 31 3.8 SEM破斷面觀察 32 3.9 試片編號 32 3.9.1 第一部分─含鎳球墨鑄鐵 32 3.9.2 第二部分─球墨鑄鐵芯 32 第 4 章 結果與討論 44 4.1 第一部分─含鎳球墨鑄鐵 44 4.1.1 鎳含量對機械性質之影響 44 4.1.2 矽和錳對機械性質之影響 45 4.1.3 基地波來鐵含量對衝擊值之影響 45 4.1.4 衝擊試片SEM破斷面觀察 45 4.1.5 化學成分、顯微組織與機械性質之相關性迴歸分析 45 4.2 第二部分─球墨鑄鐵芯 46 4.2.1 第一階段─全斷面縮尺小型球墨鑄鐵芯第一次測試結果 47 4.2.2 第一階段─全斷面縮尺小型球墨鑄鐵芯第一次測試失敗之原因探討及解決策略 48 4.2.3 第一階段─全斷面縮尺小型球墨鑄鐵芯第二次測試結果 48 4.2.4 第二階段─全斷面縮尺型球墨鑄鐵芯測試結果 49 4.2.5 第二階段─全斷面縮尺型球墨鑄鐵芯實體試樣機械性質預測 50 第 5 章 結論 99 參考文獻 101 | |
dc.language.iso | zh-TW | |
dc.title | 厚壁球墨鑄鐵之機械性質控制研究 | zh_TW |
dc.title | Mechanical Property Control of Heavy Section Ductile Cast Irons | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 許正勳(Cheng-Hsun Hsu),楊智富(Chih-Fu Yang) | |
dc.subject.keyword | 厚壁球墨鑄鐵,低溫衝擊值,球墨鑄鐵芯,塊狀石墨,品質指標, | zh_TW |
dc.subject.keyword | heavy-section ductile iron,low temperature impact value,ductile iron insert,chunky graphite,quality index, | en |
dc.relation.page | 104 | |
dc.identifier.doi | 10.6342/NTU201702306 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-08-02 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 7.62 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。