請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67457完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳光禎 | |
| dc.contributor.author | I-Cheng Lin | en |
| dc.contributor.author | 林奕丞 | zh_TW |
| dc.date.accessioned | 2021-06-17T01:33:04Z | - |
| dc.date.available | 2020-08-03 | |
| dc.date.copyright | 2017-08-03 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-02 | |
| dc.identifier.citation | [1] F. Baccelli, and B. Blaszczyszyn, Stochastic Geometry and Wireless Network Volume I: Theory. NOW Publishers, 2007
[2] F. Baccelli, and B. Blaszczyszyn, Stochastic Geometry and Wireless Network Volume II: Application. NOW Publishers, 2007 [3] V. J. Arokiamary, Cellular and Mobile Communications. Technical Publications, 2009 [4] J. Tykesson, “The number of unbounded components in the poisson Boolean model for continuum percolation in hyperbolic space,” Electron J. Prob., vol. 12, pp. 1379-1401, Nov. 2007. [5] D. B. West, Introduction to Graph Theory, Pearson Education, 2000. [6] M. E. J. Newman, Networks: An Introduction, Oxford University Press, 2010. [7] P. V. Mieghem, “Assortativity in Complex Network,” JCN2015, Jan., 2015. [8] M. Haenggi, and R. K. Ganti., Interference in Large Wireless Networks. NOW Publishers, 2009 [9] M. Nitti et al, “Network Navigability in the Social Internet of Things,” [10] P. Zhan, K. Yu and A. L. Swindlehurst, 'Wireless Relay Communications with Unmanned Aerial Vehicles: Performance and Optimization,' in IEEE Transactions on Aerospace and Electronic Systems, vol. 47, no. 3, pp. 2068-2085, July 2011 [11] Y. Zeng, R. Zhang and T. J. Lim, 'Wireless communications with unmanned aerial vehicles: opportunities and challenges,' in IEEE Communications Magazine, vol. 54, no. 5, pp. 36-42, May 2016 [12] Y. Zeng, R. Zhang and T. J. Lim, 'Throughput Maximization for UAV-Enabled Mobile Relaying Systems,' in IEEE Transactions on Communications, vol. 64, no. 12, pp. 4983-4996, Dec. 2016. [13] L. Gupta, R. Jain and G. Vaszkun, 'Survey of Important Issues in UAV Communication Networks,' in IEEE Communications Surveys & Tutorials, vol. 18, no. 2, pp. 1123-1152, Secondquarter 2016. [14] W. C. Ao and K. C. Chen, 'Broadcast Transmission Capacity of Heterogeneous Wireless Ad Hoc Networks with Secrecy Outage Constraints,' 2011 IEEE Global Telecommunications Conference - GLOBECOM 2011, Houston, TX, USA, 2011, pp. 1-5. [15] W. C. Ao and K. C. Chen, 'Percolation-Based Connectivity of Multiple Cooperative Cognitive Radio Ad Hoc Networks,' 2011 IEEE Global Telecommunications Conference - GLOBECOM 2011, Houston, TX, USA, 2011, pp. 1-6. [16] W. C. Ao and K. C. Chen, 'Upper Bound on Broadcast Transmission Capacity of Heterogeneous Wireless Ad hoc Networks,' in IEEE Communications Letters, vol. 15, no. 11, pp. 1172-1174, November 2011. [17] J. Yang; S. C. Draper; R. Nowak, 'Learning the Interference Graph of a Wireless Network,' in IEEE Transactions on Signal and Information Processing over Networks , vol.PP, no.99, pp.1-1 [18] B. Azimdoost and H. R. Sadjadpour, 'Capacity of scale free wireless networks,' 2012 IEEE Global Communications Conference (GLOBECOM), Anaheim, CA, 2012, pp. 2379-2384. [19] J. Boyer, D. D. Falconer and H. Yanikomeroglu, 'Multihop diversity in wireless relaying channels,' in IEEE Transactions on Communications, vol. 52, no. 10, pp. 1820-1830, Oct. 2004. [20] D. I. Koukoula and N. D. Hatziargyriou, 'Gossip Algorithms for Decentralized Congestion Management of Distribution Grids,' in IEEE Transactions on Sustainable Energy, vol. 7, no. 3, pp. 1071-1080, July 2016. [21] N. Loizou and P. Richtárik, 'A new perspective on randomized gossip algorithms,' 2016 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Washington, DC, 2016, pp. 440-444. [22] A. I. Sulyman, A. T. Nassar, M. K. Samimi, G. R. Maccartney, T. S. Rappaport and A. Alsanie, 'Radio propagation path loss models for 5G cellular networks in the 28 GHZ and 38 GHZ millimeter-wave bands,' in IEEE Communications Magazine, vol. 52, no. 9, pp. 78-86, September 2014. [23] J. Zhao, 'Minimum node degree and k-connectivity in wireless networks with unreliable links,' 2014 IEEE International Symposium on Information Theory, Honolulu, HI, 2014, pp. 246-250. [24] Q. Ling and Z. Tian, 'Minimum Node Degree and k-Connectivity of a Wireless Multihop Network in Bounded Area,' IEEE GLOBECOM 2007 - IEEE Global Telecommunications Conference, Washington, DC, 2007, pp. 1296-1301. [25] Y. C. Liang, K. C. Chen, G. Y. Li and P. Mahonen, 'Cognitive radio networking and communications: an overview,' in IEEE Transactions on Vehicular Technology, vol. 60, no. 7, pp. 3386-3407, Sept. 2011. [26] A. Gkikopouli, G. Nikolakopoulos and S. Manesis, 'A survey on Underwater Wireless Sensor Networks and applications,' 2012 20th Mediterranean Conference on Control & Automation (MED), Barcelona, 2012, pp. 1147-1154. [27] S. Yadav and V. Kumar, 'Optimal Clustering in Underwater Wireless Sensor Networks: Acoustic, EM and FSO Communication Compliant Technique,' in IEEE Access, vol. 5, no. , pp. 12761-12776, 2017. [28] M. Tabacchiera, S. Persia, C. Lodovisi and S. Betti, 'Performance Analysis of Underwater Swarm Sensor Networks,' 2011 International Conference on Broadband and Wireless Computing, Communication and Applications, Barcelona, 2011, pp. 333-338. [29] A. Berni, D. Merani, J. Potter and R. Been, 'Heterogeneous system framework for underwater networking,' 2011 - MILCOM 2011 Military Communications Conference, Baltimore, MD, 2011, pp. 2050-2056. [30] A. Nabavinejad and Samar Shahabi Ghahfarokhi, 'Evaluation of cellular networks in Underwater acoustic communication,' 2012 14th International Conference on Advanced Communication Technology (ICACT), PyeongChang, 2012, pp. 487-491. [31] A. Nabavinejad and S. S. Ghahfarokhi, 'Improving coverage and capacity in underwater acoustic cellular networks,' 2013 15th International Conference on Advanced Communications Technology (ICACT), PyeongChang, 2013, pp. 99-106. [32] F. Akhoundi, M. V. Jamali, N. B. Hassan, H. Beyranvand, A. Minoofar and J. A. Salehi, 'Cellular Underwater Wireless Optical CDMA Network: Potentials and Challenges,' in IEEE Access, vol. 4, no. , pp. 4254-4268, 2016. [33] F. Akhoundi, J. A. Salehi and A. Tashakori, 'Cellular Underwater Wireless Optical CDMA Network: Performance Analysis and Implementation Concepts,' in IEEE Transactions on Communications, vol. 63, no. 3, pp. 882-891, March 2015. [34] F. Akhoundi, M. V. Jamali, N. B. Hassan, H. Beyranvand, A. Minoofar and J. A. Salehi, 'Cellular Underwater Wireless Optical CDMA Network: Potentials and Challenges,' in IEEE Access, vol. 4, no. , pp. 4254-4268, 2016. [35] S. Lu, Z. Wang, Z. Wang and S. Zhou, 'Throughput of Underwater Wireless Ad Hoc Networks With Random Access: A Physical Layer Perspective,' in IEEE Transactions on Wireless Communications, vol. 14, no. 11, pp. 6257-6268, Nov. 2015. [36] J. Braga, R. Martins, C. Petrioli, R. Petroccia and L. Picari, 'Cooperation and networking in an underwater network composed by heterogeneous assets,' OCEANS 2016 MTS/IEEE Monterey, Monterey, CA, 2016, pp. 1-9. [37] D. L. Gu, G. Pei, H. Ly, M. Gerla, B. Zhang and X. Hong, 'UAV aided intelligent routing for ad-hoc wireless network in single-area theater,' 2000 IEEE Wireless Communications and Networking Conference. Conference Record (Cat. No.00TH8540), Chicago, IL, 2000, pp. 1220-1225 vol.3. [38] P. Zhan, K. Yu and A. Lee Swindlehurst, 'Wireless Relay Communications using an Unmanned Aerial Vehicle,' 2006 IEEE 7th Workshop on Signal Processing Advances in Wireless Communications, Cannes, 2006, pp. 1-5. [39] Y. Zeng, R. Zhang and T. J. Lim, 'Throughput Maximization for UAV-Enabled Mobile Relaying Systems,' in IEEE Transactions on Communications, vol. 64, no. 12, pp. 4983-4996, Dec. 2016. [40] Y. Zeng, R. Zhang and T. J. Lim, 'Wireless communications with unmanned aerial vehicles: opportunities and challenges,' in IEEE Communications Magazine, vol. 54, no. 5, pp. 36-42, May 2016. [41] M. M. Azari, F. Rosas, K. C. Chen and S. Pollin, 'Joint Sum-Rate and Power Gain Analysis of an Aerial Base Station,' 2016 IEEE Globecom Workshops (GC Wkshps), Washington, DC, 2016, pp. 1-6. [42] V. V. Chetlur; H. S. Dhillon, 'Downlink Coverage Analysis for a Finite 3D Wireless Network of Unmanned Aerial Vehicles,' in IEEE Transactions on Communications , vol.PP, no.99, pp.1-1 [43] I. Bor-Yaliniz and H. Yanikomeroglu, 'The New Frontier in RAN Heterogeneity: Multi-Tier Drone-Cells,' in IEEE Communications Magazine, vol. 54, no. 11, pp. 48-55, November 2016. [44] E. Kalantari, M. Z. Shakir, H. Yanikomeroglu and A. Yongacoglu, 'Backhaul-aware robust 3D drone placement in 5G+ wireless networks,' 2017 IEEE International Conference on Communications Workshops (ICC Workshops), Paris, 2017, pp. 109-114. [45] P. Gupta and P. R. Kumar, 'Internets in the sky: capacity of 3D wireless networks,' Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187), Sydney, NSW, 2000, pp. 2290-2295 vol.3. [46] S. C. Ng, G. Mao and B. D. O. Anderson, 'Critical Density for Connectivity in 2D and 3D Wireless Multi-Hop Networks,' in IEEE Transactions on Wireless Communications, vol. 12, no. 4, pp. 1512-1523, April 2013. [47] M. K. Watfa and S. Commuri, 'A coverage algorithm in 3D wireless sensor networks,' 2006 1st International Symposium on Wireless Pervasive Computing, 2006, pp. 6 pp.-. [48] H. M. Ammari and S. Das, 'A Study of k-Coverage and Measures of Connectivity in 3D Wireless Sensor Networks,' in IEEE Transactions on Computers, vol. 59, no. 2, pp. 243-257, Feb. 2010. [49] H. M. Ammari, 'On the problem of k-coverage in 3d wireless sensor networks: A Reuleaux tetrahedron-based approach,' 2011 Seventh International Conference on Intelligent Sensors, Sensor Networks and Information Processing, Adelaide, SA, 2011, pp. 389-394. [50] M. Pal and N. Medhi, 'Sixsoid: A new paradigm for k-coverage in 3D wireless sensor networks,' 2015 International Conference on Computing, Communication and Security (ICCCS), Pamplemousses, 2015, pp. 1-5. [51] W. Liu et al., 'Towards Robust Surface Skeleton Extraction and Its Applications in 3D Wireless Sensor Networks,' in IEEE/ACM Transactions on Networking, vol. 24, no. 6, pp. 3300-3313, December 2016. [52] Y. Jiang and A. P. Jayasumana, 'Anchor selection and Geo-Logical Routing in 3D Wireless Sensor Networks,' 39th Annual IEEE Conference on Local Computer Networks, Edmonton, AB, 2014, pp. 502-505. [53] Shao Tao, A. L. Ananda and Mun Choon Chan, 'Spherical Coordinate Routing for 3D wireless ad-hoc and sensor networks,' 2008 33rd IEEE Conference on Local Computer Networks (LCN), Montreal, Que, 2008, pp. 144-151. [54] R. Flury and R. Wattenhofer, 'Randomized 3D Geographic Routing,' IEEE INFOCOM 2008 - The 27th Conference on Computer Communications, Phoenix, AZ, 2008, pp. . [55] M. S. Gharajeh and S. Khanmohammadi, 'DFRTP: Dynamic 3D Fuzzy Routing Based on Traffic Probability in Wireless Sensor Networks,' in IET Wireless Sensor Systems, vol. 6, no. 6, pp. 211-219, 12 2016. [56] R. Zhang, K. Wang, K. Ren, Z. Zhong, X. Zhang and X. Pang, 'Measurement and Modeling of 3D Spatial Wireless Backhaul Channels in NLOS Scenarios,' 2016 International Conference on Networking and Network Applications (NaNA), Hakodate, 2016, pp. 35-40. [57] R. Zhang et al., 'Connecting a City by Wireless Backhaul: 3D Spatial Channel Characterization and Modeling Perspectives,' in IEEE Communications Magazine, vol. 55, no. 5, pp. 62-69, May 2017. [58] L. j. Peng and W. w. Li, 'The improvement of 3D wireless sensor network nodes localization,' The 26th Chinese Control and Decision Conference (2014 CCDC), Changsha, 2014, pp. 4873-4878. [59] A. M. Kamali, C. Crispin-Bailey and J. Austin, 'On advantages and limitations of 3D wireless grids as parallel platforms,' 2013 International Conference on Selected Topics in Mobile and Wireless Networking (MoWNeT), Montre??al, QC, 2013, pp. 48-55. [60] H. Jian and W. Jianzhen, 'The research of enhancing the coverage rate on 3D wireless sensor network,' 2012 7th International Conference on Computer Science & Education (ICCSE), Melbourne, VIC, 2012, pp. 1281-1284. [61] H. Zhou, H. Wu and M. Jin, 'A robust boundary detection algorithm based on connectivity only for 3D wireless sensor networks,' 2012 Proceedings IEEE INFOCOM, Orlando, FL, 2012, pp. 1602-1610. [62] E. Kranakis, D. Krizanc, A. Modi and O. Morales-Ponce, 'Connectivity Trade-offs in 3D Wireless Sensor Networks Using Directional Antennae,' 2011 IEEE International Parallel & Distributed Processing Symposium, Anchorage, AK, 2011, pp. 345-351. [63] Y. Lin, W. Yu and Y. Lostanlen, 'Optimization of wireless access point placement in realistic urban heterogeneous networks,' 2012 IEEE Global Communications Conference (GLOBECOM), Anaheim, CA, 2012, pp. 4963-4968. [64] S. Bi and R. Zhang, 'Placement Optimization of Energy and Information Access Points in Wireless Powered Communication Networks,' in IEEE Transactions on Wireless Communications, vol. 15, no. 3, pp. 2351-2364, March 2016. [65] N. F. Puspitasari, H. A. Fatta and F. W. Wibowo, 'Implementation of Greedy and Simulated Annealing Algorithms for Wireless Access Point Placement,' 2015 3rd International Conference on Artificial Intelligence, Modelling and Simulation (AIMS), Kota Kinabalu, 2015, pp. 165-170. [66] S. Bi and R. Zhang, 'Node Placement Optimization in Wireless Powered Communication Networks,' 2015 IEEE Global Communications Conference (GLOBECOM), San Diego, CA, 2015, pp. 1-6. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67457 | - |
| dc.description.abstract | 隨著無人駕駛飛行載具的發展,傳統地面網路漸漸向天空中延伸。因應未來飛行載具的普及等,現行架構下的二維無線網路勢必要有所調整。
本文探究在純三維網路布建的情形下,無線隨意網路與含基礎設施網路之布建。以隨機幾何圖作為工具,分析三維網路的基本性質。探究無線隨意網路中的連接性、路徑長與通信半徑、裝置密度的關聯性。另外將概念從二維基礎設施網路的布建,延伸到三維空間,探討基礎設施網路中重要議題。包含網路佈建結構,系統容量、干擾與通信範圍、頻率再利用、還有路徑衰減指數的關係,說明三維基礎設施網路佈建之要點。 | zh_TW |
| dc.description.abstract | With the development of the unmanned aerial vehicle (UAV), the traditional terrestrial wireless network is now extending to the sky. Consider the condition with UAV fleets and devices all over the sky, the recent structure of two dimensional network should be adjusted.
In this article, we investigate the pure 3-dimensional wireless network including the ad-hoc network and the infrastructured wireless network. We use random geometric graph (RGG) as a tool to analyze the characteristic of three dimensional network, and investigate how the important issue (ie. Connectivity, path length) in ad-hoc network related to the total number and the communication radius of the device. Then, we extend the concept of infrastructured wireless network in two dimensional space to three dimensional space, investigate the important issue, including the structure of the 3-dimensional infrastructured network and the relations between system capacity, interference and the cell size, frequency reuse, and the pathloss exponent. Summarize the design issue of infrastructured wireless network in three dimensional space. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T01:33:04Z (GMT). No. of bitstreams: 1 ntu-106-R04942067-1.pdf: 4113955 bytes, checksum: 4bb435b97a5e234cb20e2426c8e95f62 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vii LIST OF TABLES ix Chapter 1 Introduction 1 1.1 3-Dimensional Wireless Network & Unmanned Aerial Vehicle (UAV) 1 1.2 Related Works 4 1.3 Problem & Goal 8 1.4 Organization 11 Chapter 2 Preliminaries 13 2.1 Graph 13 2.1.1 Definition of Graph 13 2.1.2 Degree 13 2.1.3 Clustering Coefficient 14 2.1.4 Assortative Coefficient 15 2.1.5 Diameter 17 2.2 Random Geometric Graph 18 2.2.1 Poisson Point Process 18 2.2.2 Boolean Model 19 2.3 Random Geometric Graph Considering Interference 20 2.3.1 Signal-to-Interference-Plus-Noise-Ratio 20 2.3.2 Signal-to-Interference-Plus-Noise-Ratio Threshold Model 21 2.3.3 Outage Probability Model 22 2.3.4 Information Rate Model 22 Chapter 3 Wireless Network on a Plane 24 3.1 Connectivity 24 3.1.1 Average Degree & Degree Distribution 24 3.1.2 Distance to Nearest Nodes 25 3.1.3 Connected Graph 27 3.2 Interference 30 3.2.1 Interference of PPP 30 3.2.2 Average Degree & Shrink of Communication Radius 32 3.3 Graph Metrics 34 3.3.1 Clustering Coefficient 34 3.3.2 Assortative Coefficient 36 3.3.3 Diameter 39 Chapter 4 Wireless (Ad-Hoc) Network in Three Dimensional Space 41 4.1 Connectivity 41 4.1.1 Average Degree & Degree Distribution 42 4.1.2 Distance to the Nearest Node & Connected Probability 42 4.1.3 k-Connected Graph 44 4.2 Interference 46 4.2.1 Laplace Functional of PPP in Three Dimensional Space 47 4.2.2 Outage Probability & Communication Radius 48 4.2.3 Comparison of 2D & 3D Network in Finite Space 50 4.3 Graph Metrics 52 4.3.1 Clustering Coefficient & Assortative Coefficient 52 4.3.2 Diameter 54 4.4 Distance of Shortest Path 55 4.5 Discussion 56 Chapter 5 Issues on Design of the Three Dimensional Infrastructured Wireless Network 60 5.1 Cell Structure in 3-Dimensional Space 61 5.2 Frequency Reuse & Capacity 64 5.3 Inter-cell Interference 69 5.3.1 Infinite Space 70 5.3.2 Finite Height Space 73 5.4 Factors Influencing Interference: Cell Size & Pathloss 74 5.4.1 Cell Size 75 5.4.2 Pathloss Exponent 76 5.5 Frequency Reuse Revisit 79 5.6 Summary & Design Principles 81 Chapter 6 Conclusion 83 REFERENCE 85 | |
| dc.language.iso | en | |
| dc.subject | 無線隨意網路 | zh_TW |
| dc.subject | 隨機幾何圖 | zh_TW |
| dc.subject | 基礎設施網路 | zh_TW |
| dc.subject | 隨機幾何 | zh_TW |
| dc.subject | 無人航空載具 | zh_TW |
| dc.subject | 三維無線網路 | zh_TW |
| dc.subject | Random Geometric Graph | en |
| dc.subject | Unmanned Aerial Vehicle | en |
| dc.subject | Ad-hoc Network | en |
| dc.subject | Infrastructured Network | en |
| dc.subject | Stochastic Geometry | en |
| dc.subject | 3D Wireless Network | en |
| dc.title | 三維空間中的無線網路分析與設計 | zh_TW |
| dc.title | Design and Analysis of Wireless Network over Three Dimensional Space | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林家慶,張寶基,黃家齊,李志鵬 | |
| dc.subject.keyword | 三維無線網路,無人航空載具,無線隨意網路,基礎設施網路,隨機幾何,隨機幾何圖, | zh_TW |
| dc.subject.keyword | 3D Wireless Network,Unmanned Aerial Vehicle,Ad-hoc Network,Infrastructured Network,Stochastic Geometry,Random Geometric Graph, | en |
| dc.relation.page | 92 | |
| dc.identifier.doi | 10.6342/NTU201702432 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-08-02 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 4.02 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
