請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67456
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃斯衍(Ssu-Yen Huang) | |
dc.contributor.author | Chia-Hsien Chan | en |
dc.contributor.author | 詹佳憲 | zh_TW |
dc.date.accessioned | 2021-06-17T01:33:01Z | - |
dc.date.available | 2019-08-04 | |
dc.date.copyright | 2017-08-04 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-08-02 | |
dc.identifier.citation | 1. Hofmann, M., et al., In-Situ Sample Rotation as a Tool to Understand Chemical Vapor Deposition Growth of Long Aligned Carbon Nanotubes. Nano Letters, 2008. 8(12): p. 4122-4127.
2. Hicks, L.D. and M.S. Dresselhaus, Thermoelectric figure of merit of a one-dimensional conductor. Physical Review B, 1993. 47(24): p. 16631-16634. 3. Hicks, L.D. and M.S. Dresselhaus, Effect of quantum-well structures on the thermoelectric figure of merit. Physical Review B, 1993. 47(19): p. 12727-12731. 4. Hsiao, T.-K., et al., Observation of room-temperature ballistic thermal conduction persisting over 8.3 [micro]m in SiGe nanowires. Nat Nano, 2013. 8(7): p. 534-538. 5. Huang, B.-W., et al., Length-dependent thermal transport and ballistic thermal conduction. AIP Advances, 2015. 5(5): p. 053202. 6. Chu, T.-Y., Probing Non-Local Thermal Transport, in Department of Physics. 2015, National Taiwan University. p. 37-54. 7. Lee, V., et al., Divergent and Ultrahigh Thermal Conductivity in Millimeter-Long Nanotubes. Physical Review Letters, 2017. 118(13): p. 135901. 8. Yuzvinsky, T.D., et al., Precision cutting of nanotubes with a low-energy electron beam. Applied Physics Letters, 2005. 86(5): p. 053109. 9. Zhu, G.H., et al., Increased Phonon Scattering by Nanograins and Point Defects in Nanostructured Silicon with a Low Concentration of Germanium. Physical Review Letters, 2009. 102(19): p. 196803. 10. Bera, C., N. Mingo, and S. Volz, Marked Effects of Alloying on the Thermal Conductivity of Nanoporous Materials. Physical Review Letters, 2010. 104(11): p. 115502. 11. Garg, J., et al., Role of Disorder and Anharmonicity in the Thermal Conductivity of Silicon-Germanium Alloys: A First-Principles Study. Physical Review Letters, 2011. 106(4): p. 045901. 12. Landauer,R 'Spatial Variation of Currents and Fields Due to Localized Scatterers in Metallic Conduction,' in IBM Journal of Research and Development, vol. 1, no. 3, pp. 223-231, July 1957. 13. Landauer, R. Philosophical Magazine 1970, 21, (172), 863-867. 14. Landauer, R. Journal of Physics: Condensed Matter 1989, 1, (43), 8099. 15. Dhar,A.Heat Transport in low-dimensional systems,Adv.Phys.57,2008,457-537 16. Chang, C.W., et al., Breakdown of Fourier's Law in Nanotube Thermal Conductors. Physical Review Letters, 2008. 101(7): p. 075903. 17. Saito, K., S. Takesue, and S. Miyashita, Thermal conduction in a quantum system. Physical Review E, 1996. 54(3): p. 2404-2408. 18 Lepri, S., R. Livi, and A. Politi, Heat Conduction in Chains of Nonlinear Oscillators. Physical Review Letters, 1997. 78(10): p. 1896-1899. 19 B. Li, H. Zhao, and B. Hu, Can Disorder Induce a Finite Thermal Conductivity in 1D Lattices. Phys. Rev. Lett.,2001.86:63 20 Dhar, A. and K. Saito, Heat conduction in the disordered Fermi-Pasta-Ulam chain. Physical Review E, 2008. 78(6): p. 061136. 21. Zhan, T., et al., Thermal boundary resistance at Si/Ge interfaces by molecular dynamics simulation. AIP Advances, 2015. 5(4): p. 047102. 22. Li, X., et al., Comparison of isotope effects on thermal conductivity of graphene nanoribbons and carbon nanotubes. Applied Physics Letters, 2013. 103(1): p. 013111. 23 Basile, G., Delfini, L., Lepri, S. et al. Eur. Phys. J. Spec. Top. (2007) 151: 85. 24. Fumio, N., et al., Thermal Conductance of Buckled Carbon Nanotubes. Japanese Journal of Applied Physics, 2012. 51(1R): p. 015102. 25. L.A. Giannuzzi; F.A. Stevens (2004). Introduction to Focused Ion Beams: Instrumentation, Theory, Techniques and Practice. Springer Press. ISBN 978-0- 387-23116-7 26. Jeremie Maire, Roman Anufriev Masahiro,Nomura, Ballistic thermal transport in silicon nanowires. Scientific Reports, 2017.41794 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67456 | - |
dc.description.abstract | 近年來,有理論和實驗指出低維度材料有著特殊的熱傳導現象。這本篇論文中,我們將探討一維材料包含矽鍺均勻合金奈米線和奈米碳管在室溫下的熱傳導非局域性效應。前者是傳統認知的波動型(彈道型)熱傳導現象6,然而後者確是異常型的熱傳導現象7,兩者皆在一維尺度上不遵守古典的傅立葉熱傳導現象。理論上來說非局域性效應會在彈道式熱傳導被顯現。因此,為了更進一步探索這兩種特殊的熱傳導性質,我們使用微米尺度的三端點量測裝置(約10微米至150微米)進行非局性效應的探討。
論文第一部份,我們將陳述熱傳導的背景並簡單的介紹實驗中會使用到的實驗技巧包含掃描式電子顯微鏡、溫度係數量測已及聚焦離子束系統。 論文第二部分,我們主要探討在矽鍺奈米線內波動型熱傳導所具有的非局域現象並做定量和定性上的分析,並發現其非局域大小可達30%。在對照實驗上,我們量測氧化鎵奈米線,因為其熱傳導現象屬於傅立葉古典的熱擴散方式,實驗上證明無非局域性效應的發生。最後意外地,我們在矽奈米線中也發現疑似非局域性效應 論文第三部分,我們探討單壁奈米碳管的異常熱傳導現象是否有非局域效應的發生,我們使用兩倍頻率的分析方式量測進而發現長度為150微米時發現並無非局域熱傳導現象的發生。 | zh_TW |
dc.description.abstract | Recently, there are many studies suggesting the presence of unusual thermal transport in low dimensional systems. In this thesis, we will investigate non-local effect of one-dimensional materials, including Silicon-Germanium (Si-Ge) and Carbon Nanotube (CNT) at room temperature. The former is conventional ballistic thermal conduction6, whereas the latter belongs to anomalous thermal conduction7. Both of them are known to violate the Fourier’s law of thermal conduction and display a length-dependent thermal conductivity. In order to investigate the non-local property of thermal transport, we used thee-terminals thermal devices separated by various distances (10μm~150μm). In the first part of the thesis, we will provide the background knowledge and have a brief introduction to thermal device and experiment techniques, including SEM skill, temperature coefficient measurements and Focused Ion Beam techniques. In the second part of the thesis, we will mainly analyze heat flow in ballistic regime and calculate thermal conductance in Si-Ge alloy nanowire. The non-local effect value we discovered is at least 30%. Additionally, we measured 〖Ga〗_2 O_3 nanowires as a controlled experiment for its diffusive, local thermal transport. Interestingly, we also found that the non-local phenomena could exist in Silicon nanowire. In the third part of the thesis, we hope to investigate whether the anomalous thermal transport observed in single-wall carbon nanotube (SWCNT) could have similar non-local effect. We employed a 2ω measurement methods and found that for a length of SWCNT exceeding 150μm, its thermal transport is almost local. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T01:33:01Z (GMT). No. of bitstreams: 1 ntu-106-R04222051-1.pdf: 2597030 bytes, checksum: fb885bd2f6bf2d87d789b20006cd79ea (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 口試委員審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vi LIST OF TABLES xiii Chapter 1 Introduction 1 1.1 Background 1 1.2 Experiment preparation and techniques 4 1.2.1 Thermal device and Temperature Coefficient Measurement 4 1.2.2 Scanning Electron Microscope (SEM) skill 6 1.2.3 Focused Ion Beam (FIB) 〖Ga〗^+source 9 Chapter 2 Non-local thermal transport in Si-Ge nanowire 11 2.1 Introduction 11 2.1.1 Background 11 2.1.2 The evidence of ballistic thermal transport………………………….13 2.2 Experimental method 15 2.3 Result and discussion 21 2.3.1 previous work 21 2.3.2 Si-Ge nanowire 25 2.3.3 〖Ga〗_2 O_3 nanowire 32 2.3.4 Silicon nanowire 39 2.4 Summary 48 Chapter 3 Non-local thermal transport in quasi-one-dimensional Single-Wall Carbon Nanotube (SWCNT) 49 3.1 Introduction 49 3.1.1 Background 49 3.1.2 The evidence of anomalous thermal transport 50 3.2 Experimental method 51 3.2.1 The synthesis of carbon nanotubes 51 3.2.2 The analysis method 54 3.3 Result and discussion 58 3.3.1 The SWCNT at length 150μm 58 3.4 Summary 67 Chapter 4 Conclusion 68 Reference........................................................................................................................69 | |
dc.language.iso | en | |
dc.title | 一維材料之非局域性熱傳導現象 | zh_TW |
dc.title | Non-Local Thermal Transport of One-Dimensional Materials | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 張之威(Chih-Wei Chang) | |
dc.contributor.oralexamcommittee | 李偉立(Wei-Li Lee) | |
dc.subject.keyword | 非局域性效應,彈道式熱傳導,異常型熱傳導,傅立葉熱傳導,矽鍺奈米線,單壁奈米碳管, | zh_TW |
dc.subject.keyword | Non-local effect,Ballistic Thermal transport,Anomalous thermal conduction,Fourier’s thermal conduction,Silicon Germanium nanowire,Single wall carbon nanotube., | en |
dc.relation.page | 70 | |
dc.identifier.doi | 10.6342/NTU201702357 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-08-02 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 物理學研究所 | zh_TW |
顯示於系所單位: | 物理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 2.54 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。