Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67389
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃青真
dc.contributor.authorLiang-Yu Niehen
dc.contributor.author聶良育zh_TW
dc.date.accessioned2021-06-17T01:30:16Z-
dc.date.available2022-08-14
dc.date.copyright2017-08-14
dc.date.issued2017
dc.date.submitted2017-08-04
dc.identifier.citationAhmadian, Maryam, et al. 'PPAR [gamma] signaling and metabolism: the good, the
bad and the future.' Nature Medicine 99.5 (2013): 557-566.
Alam, Md Ashraful, et al. 'Beneficial role of bitter melon supplementation in obesity
and related complications in metabolic syndrome.' Journal of Lipids 2015 (2015).
Anila, L., and N. R. Vijayalakshmi. 'Beneficial effects of flavonoids from Sesamum indicum, Emblica officinalis and Momordica charantia.' Phytotherapy Research 14.8 (2000): 592-595.
Angulo, Paul. 'Nonalcoholic fatty liver disease.' New England Journal of Medicine 346.16 (2002): 1221-1231.
Aranda, Ana, and Angel Pascual. 'Nuclear hormone receptors and gene expression.' Physiological Reviews 81.3 (2001): 1269-1304.
Arora, Arun, and Sanju Chaudhary. 'Potential source of α-eleostearic acid of Momordica charantia seed oil of arid zone plants of Rajasthan, India.' International Journal of Basic and Applied Sciences 2.2 (2012): 59-62.
Bennett, Richard N., and Roger M. Wallsgrove. 'Secondary metabolites in plant defence mechanisms.' New Phytologist 127.4 (1994): 617-633.
Berthou, Laurence, et al. 'Opposite regulation of human versus mouse apolipoprotein AI by fibrates in human apolipoprotein A-I transgenic mice.' Journal of Clinical Investigation 97.11 (1996): 2408.
Braissant, Olivier, and Walter Wahli. 'Differential expression of peroxisome proliferator-activated receptor-α,-β, and-γ during rat embryonic development 1.' Endocrinology 139.6 (1998): 2748-2754.
Camps, L., et al. 'Lipoprotein lipase in lungs, spleen, and liver: synthesis and distribution.' Journal of Lipid Research 32.12 (1991): 1877-1888.
Chang, Ya-Yuan, et al. 'Roles of peroxisome proliferator-activated receptor α in bitter melon seed oil-corrected lipid disorders and conversion of α-eleostearic acid into rumenic acid in C57BL/6J Mice.' Nutrients 8.12 (2016): 805.
Chao C-Y. and Ching-jang Huang. 'Bitter gourd (Momordica charantia) extract
activates peroxisome proliferator-activated receptors and upregulates the expression of the acyl CoA oxidase gene in H4IIEC3 hepatoma cells.' Journal of Biomedical Science 10.6 (2003): 782-791.
Chao, Che-Yi, Mei-Chin Yin, and Ching-jang Huang. 'Wild bitter gourd extract up -regulates mRNA expression of PPARα, PPARγ and their target genes in C57BL/6J mice.' Journal of Ethnopharmacology 135.1 (2011): 156-161.
Chen, Jian Chao, et al. 'Cucurbitacins and cucurbitane glycosides: structures and biological activities.' Natural Product Reports 22.3 (2005): 386-399.
Chen, Pei-Hsuan, et al. 'Bitter melon seed oil–attenuated body fat accumulation in diet- induced obese mice is associated with cAMP-dependent protein kinase activation and cell death in white adipose tissue.' The Journal of Nutrition 142.7 (2012): 1197-1204.
Chen, Qixuan, and Edmund TS Li. 'Reduced adiposity in bitter melon (Momordica
charantia) fed rats is associated with lower tissue triglyceride and higher plasma catecholamines.' British Journal of Nutrition 93.05 (2005): 747-754.
Chen, Gou-Chun, et al. 'A conjugated fatty acid present at high levels in bitter melon seed favorably affects lipid metabolism in hepatocytes by increasing NAD+/NADH ratio and activating PPARα, AMPK and SIRT1 signaling pathway.' The Journal of Nutritional Biochemistry 33 (2016): 28-35.
Cheng, Hsueh-Ling, et al. 'A cell-based screening identifies compounds from the stem of Momordica charantia that overcome insulin resistance and activate AMP- activated protein kinase.' Journal of Agricultural and Food Chemistry 56.16 (2008): 6835-6843.
Chiang, John YL, Rhonda Kimmel, and Diane Stroup. 'Regulation of cholesterol
7α-hydroxylase gene (CYP7A1) transcription by the liver orphan receptor (LXRα).' Gene 262.1 (2001): 257-265.
Choi, Youngjin, et al. 'Regulation of stearoyl-CoA desaturase activity by the trans-10, cis-12 isomer of conjugated linoleic acid in HepG2 cells.' Biochemical and Biophysical Research Communications 284.3 (2001): 689-693.
Chuang Chia-Ying, et al. 'Fractionation and identification of 9c, 11t, 13t-conjugated
linolenic acid as an activator of PPARα in bitter gourd (Momordica charantia L.).' Journal of Biomedical Science 13.6 (2006): 763-772.
Clément, Lionel, et al. 'Dietary trans-10, cis-12 conjugated linoleic acid induces hyperinsulinemia and fatty liver in the mouse.' Journal of Lipid Research 43.9 (2002): 1400-1409.
Coll, Teresa, et al. 'Oleate reverses palmitate-induced insulin resistance and inflammation in skeletal muscle cells.' Journal of Biological Chemistry 283.17 (2008): 11107-11116.
Cook, George A. 'Differences in the sensitivity of carnitine palmitoyltransferase to inhibition by malonyl-CoA are due to differences in Ki values.' Journal of Biological Chemistry 259.19 (1984): 12030-12033.
Delerive, Philippe, Jean-Charles Fruchart, and Bart Staels. 'Peroxisome proliferator- activated receptors in inflammation control.' Journal of Endocrinology 169.3 (2001): 453-459.
Duval, Caroline, et al. 'Niemann–Pick C1 like 1 gene expression is down-regulated
by LXR activators in the intestine.' Biochemical and Biophysical Research Communications 340.4 (2006): 1259-1263.
Dyer, John M., et al. 'Molecular analysis of a bifunctional fatty acid conjugase/desaturase from tung. Implications for the evolution of plant fatty acid diversity.' Plant Physiology 130.4 (2002): 2027-2038.
Edwards, Peter A., Heidi R. Kast, and Andrew M. Anisfeld. 'BAREing it all: the adoption of LXR and FXR and their roles in lipid homeostasis.' Journal of Lipid Research 43.1 (2002): 2-12.
Folch, Jordi, M_ Lees, and G. H. Sloane-Stanley. 'A simple method for the isolation and purification of total lipids from animal tissues.' J Biol Chem 226.1 (1957): 497-509.
Goto, Tsuyoshi, et al. 'Phytol directly activates peroxisome proliferator-activated receptor α (PPARα) and regulates gene expression involved in lipid metabolism in PPARα-expressing HepG2 hepatocytes.' Biochemical and Biophysical Research Communications 337.2 (2005): 440-445.
Grabacka, Maja M., Malgorzata Gawin, and Malgorzata Pierzchalska. 'Phytochemical modulators of mitochondria: The search for chemopreventive agents and supportive therapeutics.' Pharmaceuticals 7.9 (2014): 913-942.
Grefhorst, Aldo, et al. 'Stimulation of lipogenesis by pharmacological activation of
the liver X receptor leads to production of large, triglyceride-rich very low density lipoprotein particles.' Journal of Biological Chemistry 277.37 (2002): 34182-34190.
Grefhorst, Aldo, et al. 'Differential effects of pharmacological liver X receptor activation on hepatic and peripheral insulin sensitivity in lean and ob/ob mice.' American Journal of Physiology-Endocrinology and Metabolism 289.5 (2005): E829-E838.
Griffett, Kristine, et al. 'A liver-selective LXR inverse agonist that suppresses hepatic steatosis.' ACS Chemical Biology 8.3 (2012): 559-567.
Grønning-Wang, Line M., Christian Bindesbøll, and Hilde I. Nebb. The role of liver X receptor in hepatic de novo lipogenesis and cross-talk with insulin and glucose signaling. INTECH Open Access Publisher, 2013.
Grover, J. K., and S. P. Yadav. 'Pharmacological actions and potential uses of Momordica charantia: a review.' Journal of Ethnopharmacology 93.1 (2004): 123-132.
Hennuyer, Nathalie, et al. 'Beneficial effects of fibrates on apolipoprotein AI
metabolism occur independently of any peroxisome proliferative response.'Circulation 99.18 (1999): 2445-2451.
Horton, Jay D., Joseph L. Goldstein, and Michael S. Brown. 'SREBPs: activators of
the complete program of cholesterol and fatty acid synthesis in the liver.' The Journal of Clinical Investigation 109.9 (2002): 1125-1131.
Harinantenaina Liva, et al. 'Momordica charantia constituents and antidiabetic
screening of the isolated major compounds.' Chemical and Pharmaceutical Bulletin 54.7 (2006): 1017-1021.
Hong, Cynthia, and Peter Tontonoz. 'Liver X receptors in lipid metabolism:
opportunities for drug discovery.' Nature Reviews Drug discovery 13.6 (2014): 433-444.
Hsu, Mei-Hui, et al. 'Identification of peroxisome proliferator-responsive human genes by elevated expression of the peroxisome proliferator-activated receptor α in HepG2 cells.' Journal of Biological Chemistry 276.30 (2001): 27950-27958.
Hsu Chin, et al. 'Isolation and identification of cucurbitane-type triterpenoids with
partial agonist/antagonist potential for estrogen receptors from Momordica charantia.' Journal of Agricultural and Food Chemistry 59.9 (2011): 4553-4561.
Hsu, Chin, et al. 'Wild bitter melon (Momordica charantia Linn. var. abbreviata Ser.) extract and its bioactive components suppress Propionibacterium acnes-induced inflammation.' Food Chemistry 135.3 (2012): 976-984.
Ide, Tomohiro, et al. 'Cross-talk between peroxisome proliferator-activated receptor (PPAR) α and liver X receptor (LXR) in nutritional regulation of fatty acid metabolism. II. LXRs suppress lipid degradation gene promoters through inhibition of PPAR signaling.' Molecular Endocrinology 17.7 (2003): 1255-1267.
Iizuka, Katsumi, et al. 'Deficiency of carbohydrate response element-binding protein
(ChREBP) reduces lipogenesis as well as glycolysis.' Proceedings of the National Academy of Sciences of the United States of America 101.19 (2004): 7281-7286.
Inoue, Ikuo, et al. 'The ligands/activators for peroxisome proliferator-activated
receptor α (PPARα) and PPARγ increase Cu 2+, Zn 2+-superoxide dismutase and decrease p22phox message expressions in primary endothelial cells.' Metabolism 50.1 (2001): 3-11.
Ip, Emilia, et al. 'Central role of PPARα‐dependent hepatic lipid turnover in dietary steatohepatitis in mice.' Hepatology 38.1 (2003): 123-132.
Izumi, Toru, et al. 'Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans.' The Journal of Nutrition 130.7 (2000): 1695- 1699.
Jayasooriya, Anura P., et al. 'Effects of Momordica charantia powder on serum glucose levels and various lipid parameters in rats fed with cholesterol-free and cholesterol-enriched diets.' Journal of Ethnopharmacology 72.1 (2000): 331- 336.
Jia, Yaoyao, et al. 'Cyanidin, a natural flavonoid, is an agonistic ligand for liver X receptor alpha and beta and reduces cellular lipid accumulation in macrophages and hepatocytes.' Bioorganic & Medicinal Chemistry Letters 23.14 (2013): 4185-4190.
Kahn, Steven E., Rebecca L. Hull, and Kristina M. Utzschneider. 'Mechanisms
linking obesity to insulin resistance and type 2 diabetes.' Nature 444.7121 (2006): 840-846.
Kaneko, Emi, et al. 'Induction of intestinal ATP-binding cassette transporters by a phytosterol-derived liver X receptor agonist.' Journal of Biological Chemistry 278.38 (2003): 36091-36098.
Kawakami, Yuki, et al. 'Comparison of regulative functions between dietary soy isoflavones aglycone and glucoside on lipid metabolism in rats fed cholesterol.' The Journal of Nutritional Biochemistry 16.4 (2005): 205-212.
Keller, Amy C., et al. 'Saponins from the traditional medicinal plant Momordica charantia stimulate insulin secretion in vitro.' Phytomedicine 19.1 (2011): 32-37.
Kelley, D. S., et al. 'Contrasting effects of t10, c12-and c9, t11-conjugated linoleic acid isomers on the fatty acid profiles of mouse liver lipids.' Lipids 39.2 (2004): 135- 141.
Kelley, Darshan S., et al. 'Fatty acid composition of liver, adipose tissue, spleen, and heart of mice fed diets containing t10, c12-, and c9, t11-conjugated linoleic acid.' Prostaglandins, Leukotrienes and Essential Fatty Acids 74.5 (2006): 331-338.
Kenakin, Terry. 'Principles: receptor theory in pharmacology.' Trends in Pharmacological Sciences 25.4 (2004): 186-192.
Kersten Sander. 'Integrated physiology and systems biology of PPARα.'Molecular
metabolism 3.4 (2014): 354-371.
Khanna, Pushpa, et al. 'Hypoglycemic activity of polypeptide-p from a plant source.' Journal of Natural Products 44.6 (1981): 648-655.
Klomann, Sandra D, et al. 'Antidiabetic effects of bitter gourd extracts in
insulin-resistant db/db mice.' British Journal of Nutrition 104.11 (2010): 1613-1620.
Knight, Brian L., et al. 'A role for PPARα in the control of SREBP activity and lipid synthesis in the liver.' Biochemical Journal 389.2 (2005): 413-421.
Leone, Teresa C., Carla J. Weinheimer, and Daniel P. Kelly. 'A critical role for theperoxisome proliferator-activated receptor α (PPARα) in the cellular fasting response: the PPARα-null mouse as a model of fatty acid oxidation disorders.' Proceedings of the National Academy of Sciences 96.13 (1999): 7473-7478.
Lin, Yuguang, et al. 'Conjugated linoleic acid isomers have differential effects on triglyceride secretion in Hep G2 cells.' Biochimica et Biophysica Acta (BBA)- Molecular and Cell Biology of Lipids 1533.1 (2001): 38-46.
Lu Kan- Liu, Linsen, Earl G. Hammond, and Basil J. Nikolau. 'In vivo studies of the biosynthesis of [alpha]-eleostearic acid in the seed of Momordica charantia L.' Plant Physiology 113.4 (1997): 1343-1349.
Ni, et al. 'Wild bitter gourd increased metabolic rate and up-regulated genes
related to mitochondria biogenesis and UCP-1 in mice.' Journal of Functional Foods 5.2 (2013): 668-678.
Nagy, Laszlo, and John WR Schwabe. 'Mechanism of the nuclear receptor molecular switch.' Trends in Biochemical Sciences 29.6 (2004): 317-324.
Mandard, S., M. Müller, and S. Kersten. 'Peroxisome proliferator-activated receptor α target genes.' Cellular and Molecular Life Sciences CMLS 61.4 (2004): 393-416.
Matsui, Sho, et al. 'The hypocholesterolemic activity of Momordica charantia fruit is mediated by the altered cholesterol-and bile acid–regulating gene expression in rat liver.' Nutrition Research 33.7 (2013): 580-585.
Miller, Carolyn Wilson, and James M. Ntambi. 'Peroxisome proliferators induce mouse liver stearoyl-CoA desaturase 1 gene expression.' Proceedings of the National Academy of Sciences 93.18 (1996): 9443-9448.
Nhiem, Nguyen Xuan, et al. 'α-Glucosidase inhibition properties of cucurbitane-type triterpene glycosides from the fruits of Momordica charantia.' Chemical and Pharmaceutical Bulletin 58.5 (2010): 720-724.
Noguchi, Ryoko, et al. 'Dietary effects of bitter gourd oil on blood and liver lipids of rats.' Archives of Biochemistry and Biophysics 396.2 (2001): 207-212.
Ntambi, James M. 'Regulation of stearoyl-CoA desaturase by polyunsaturated fatty acids and cholesterol.' Journal of Lipid Research 40.9 (1999): 1549-1558.
Oosterveer, Maaike H., et al. 'Fenofibrate simultaneously induces hepatic fatty acid oxidation, synthesis, and elongation in mice.' Journal of Biological Chemistry 284.49 (2009): 34036-34044.
Osumi, Takashi, Sadaki Yokota, and Takashi Hashimoto. 'Proliferation of peroxisomes and induction of peroxisomal β-oxidation enzymes in rat hepatoma H4IIEC3 by ciprofibrate.' Journal of Biochemistry 108.4 (1990): 614-621.
Ou, Jiafu, et al. 'Unsaturated fatty acids inhibit transcription of the sterol regulatory element- binding protein-1c (SREBP-1c) gene by antagonizing ligand-dependent activation of the LXR.' Proceedings of the National Academy of Sciences 98.11 (2001): 6027-6032.
Raman, A., and C. Lau. 'Anti-diabetic properties and phytochemistry of Momordica charantia L.(Cucurbitaceae).' Phytomedicine 2.4 (1996): 349-362.
Park, Yeonhwa, et al. 'Effect of conjugated linoleic acid on body composition in mice.' Lipids 32.8 (1997): 853-858.
Park, Yeonhwa, et al. 'Changes in body composition in mice during feeding and withdrawal of conjugated linoleic acid.' Lipids 34.3 (1999): 243-248.
Pahoja, Vajanti Mala, and Mumtaz Ali Sethar. 'A review of enzymatic properties of lipase in plants, animals and microorganisms.' Pakistan J. Appl. Sci 2.4 (2002): 474-484.
Peet, Daniel J., et al. 'Cholesterol and bile acid metabolism are impaired in mice l acking the nuclear oxysterol receptor LXRα.' Cell 93.5 (1998): 693-704.
Pereira, Amanda F., et al. 'Administration of a murine diet supplemented with conjugated linoleic acid increases the expression and activity of hepatic uncoupling proteins.' Journal of Bioenergetics and Biomembranes (2012): 1-10.
Reaven Gerald M. 'Role of insulin resistance in human disease.' Diabetes37.12
(1988): 1595-1607.
Reeves, Philip G., Forrest H. Nielsen, and George C. Fahey Jr. 'AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet.' J nutr 123.11 (1993): 1939-1951.
Repa, Joyce J., et al. 'Regulation of mouse sterol regulatory element-binding protein- 1c gene (SREBP-1c) by oxysterol receptors, LXRα and LXRβ.' Genes & Development 14.22 (2000): 2819-2830.
Repa, Joyce J., et al. 'Regulation of ATP-binding cassette sterol transporters ABCG5
and ABCG8 by the liver X receptors α and β.' Journal of Biological Chemistry 277.21 (2002): 18793-18800.
Riedel, Annett, et al. 'Caffeine dose-dependently induces thermogenesis but restores ATP in HepG2 cells in culture.' Food & Function 3.9 (2012): 955-964.
Riggs, B. Lawrence, and Lynn C. Hartmann. 'Selective estrogen-receptor modulators—mechanisms of action and application to clinical practice.' New England Journal of Medicine 348.7 (2003): 618-629.
Plat, Jogchum, Jason A. Nichols, and Ronald P. Mensink. 'Plant sterols and stanols: effects on mixed micellar composition and LXR (target gene) activation.' Journal of Lipid Research 46.11 (2005): 2468-2476.
Roche, Helen M., et al. 'Isomer-dependent metabolic effects of conjugated linoleic acid.' Diabetes 51.7 (2002): 2037-2044.
Rodríguez-Calvo, Ricardo, et al. 'Activation of peroxisome proliferator–activated receptor β/δ inhibits lipopolysaccharide-induced cytokine production in adipocytes by lowering nuclear factor-κb activity via extracellular signal–related kinase 1/2.' Diabetes 57.8 (2008): 2149-2157.
Schultz, Joshua R., et al. 'Role of LXRs in control of lipogenesis.' Genes &
Development 14.22 (2000): 2831-2838.
Schwender, Jörg, John Ohlrogge, and Yair Shachar-Hill. 'Understanding flux in plant metabolic networks.' Current Opinion in Plant Biology 7.3 (2004): 309-317.
Senanayake, Gamarallage VK, et al. 'The effects of bitter melon (Momordica charantia) on serum and liver triglyceride levels in rats.' Journal of Ethnopharmacology 91.2 (2004): 257-262.
Sengupta, Avery, et al. 'Conjugated linolenic acid nanoparticles inhibit hypercholesterolemia induced by feeding a high-fat diet in male albino rats.' Journal of Food Science and Technology 52.1 (2015): 458-464.
Shang, Yongfeng, and Myles Brown. 'Molecular determinants for the tissue specificity of SERMs.' Science 295.5564 (2002): 2465-2468.
Small, G. M., K. Burdett, and M. J. Connock. 'A sensitive spectrophotometric assay for peroxisomal acyl-CoA oxidase.' Biochemical Journal 227.1 (1985): 205-210.
Smith, Carolyn L., and Bert W. O’malley. 'Coregulator function: a key to understanding tissue specificity of selective receptor modulators.' Endocrine Reviews 25.1 (2004): 45-71.
Tan Min-Jia, et al. 'Antidiabetic activities of triterpenoids isolated from bitter melon
associated with activation of the AMPK pathway.' Chemistry & Biology 15.3 (2008): 263-273.
Tannapfel, Andrea, et al. 'Histopathological diagnosis of non-alcoholic and alcoholic fatty liver disease.' Virchows Archiv 458.5 (2011): 511-523.
Tsuboyama-Kasaoka, Nobuyo, et al. 'Conjugated linoleic acid supplementation reduces adipose tissue by apoptosis and develops lipodystrophy in mice.' Diabetes 49.9 (2000): 1534-1542.
Tsuzuki, Tsuyoshi, et al. 'α-Eleostearic acid (9Z11E13E-18: 3) is quickly converted to conjugated linoleic acid (9Z11E-18: 2) in rats.' The Journal of Nutrition 134.10 (2004): 2634-2639.
Verma, O. P., et al. 'Isolation, purification and characterization of β-glucosidase from Rauvolfia serpentine.' J Chem Eng Process Technol 2.5 (2011): 1-4.
Viennois, Emilie, et al. 'Targeting liver X receptors in human health: deadlock or
promising trail?.' Expert Opinion on Therapeutic Targets 15.2 (2011): 219-232.
Willson Timothy M., et al. 'The PPARs: from orphan receptors to drug discovery.' Journal of Medicinal Chemistry 43.4 (2000): 527-550.
West, David B., et al. 'Effects of conjugated linoleic acid on body fat and energy metabolism in the mouse.' American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 275.3 (1998): R667-R672.
Xu, Jie, et al. 'Bitter gourd inhibits the development of obesity-associated fatty liver in C57BL/6 mice fed a high-fat diet.' The Journal of Nutrition 144.4 (2014): 475- 483.
Yamashita, Hiromi, et al. 'A glucose-responsive transcription factor that regulates
carbohydrate metabolism in the liver.' Proceedings of the National Academy of Sciences 98.16 (2001): 9116-9121.
Yang, Peizhen, et al. 'Mining the bitter melon (Momordica charantia L.) seed transcriptome by 454 analysis of non-normalized and normalized cDNA populations for conjugated fatty acid metabolism-related genes.' BMC Plant Biology 10.1 (2010): 250.
Yang, Chendong, et al. 'Disruption of cholesterol homeostasis by plant sterols.' Journal of Clinical Investigation 114.6 (2004): 813.
Yoshikawa, Tomohiro, et al. 'Polyunsaturated fatty acids suppress sterol regulatory element-binding protein 1c promoter activity by inhibition of liver X receptor (LXR) binding to LXR response elements.' Journal of Biological Chemistry 277.3 (2002): 1705-1711.
Yuan, Gao‐Feng, et al. 'Effects of conjugated linolenic acid and conjugated linoleic acid on lipid metabolism in mice.' Eur J Lipid Sci Technol 111 (2009): 537-545.
Yuan, Gao‐Feng, et al. 'α‐Eleostearic acid is more effectively metabolized into conjugated linoleic acid than punicic acid in mice.' Journal of the Science of Food and Agriculture 89.6 (2009): 1006-1011.
Zhao, Chunyan, and Karin Dahlman-Wright. 'Liver X receptor in cholesterol
metabolism.' Journal of Endocrinology 204.3 (2010): 233-240.
Zhu, Bao Ting. 'Mechanistic explanation for the unique pharmacologic properties of receptor partial agonists.' Biomedicine & Pharmacotherapy 59.3 (2005): 76-89.
白依平 (2012)。山苦瓜萃物暨其區分物及一些苦味分子對腸道內分泌細胞株
STC-1分泌GLP-1之影響。國立臺灣大學生化科技學系。
李世欽 (2017)。以探討 PPARα 促效劑對高脂飲食誘發小鼠代謝失調及情緒 礙之影響。國立臺灣大學生化科技學系。
周怡君 (2010)。以脂肪與肌肉細胞模式評估山苦瓜水萃物暨其區分物對細胞汲 取葡萄糖之影響與相關機制探討。國立臺灣大學生化科技學系。
林德岳 (2013)。山苦瓜萃取暨其酵素水解最佳化與三萜類成分之探討。國立臺灣 大學生化科技學系。
徐瑨 (2011)。自山苦瓜單離植物雌激素及其化學鑑定與生物活性探討。國立臺灣大學生化科技學系。
許珊菁 (2006)。鼠模式中高脂飲食、肥胖與之質調控基因之表現。國立臺灣大學微生物與生化學研究所。
黃婷妮 (2010)。山苦瓜萃取物暨其區分物之腸泌素效應。國立臺灣大學生化科技 學系。
楊惟蒂 (2010)。山苦瓜水萃物暨其區分物對肝細胞汲取葡萄糖及胰島 beta 細 胞分泌胰島素之影響。國立臺灣大學生化科技學系。
董又慈 (2016)。山苦瓜改善高脂飲食誘發小鼠代謝異常、脂肪肝與肝相關基因 mRNA 表現。國立臺灣大學生化科技學系。
穆偉捷 (2014)。山苦瓜上調C57BL/6J公鼠肝Fgf21 mRNA並誘發副睪脂褐 化。國立臺灣大學生化科技學系。
蔡豐隆 (2012)。山苦瓜萃取物經納豆菌NTU-18去醣基化作用之效果探討。國 立臺灣大學生化科技學系。
蔣汶龍 (2014)。探討山苦瓜對飲食誘導肥胖模式小鼠骨骼肌粒線體增殖之影 響。國立臺灣大學生化科技學系。
鄒尚瑀 (2016)。長期餵食山苦瓜對高脂飲食誘導肥胖小鼠代謝異常及白色脂肪 組織褐化相關基因表現之效應。國立臺灣大學生化科技學系。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67389-
dc.description.abstract肥胖以及代謝異常相關慢性疾病,如糖尿病、高血壓、非酒精性脂肪肝等,為目前極受關注的危害健康議題。研究指出苦瓜能有效控制血糖以及改善脂質代謝。山苦瓜的特色活性成分中,三萜類化合物已被報導能夠活化 AMPK 以促進葡萄糖汲取, 9c, 11t, 13t-conjugated linolenic acid (CLN) 則能透過活化 PPARα 進而調節脂質代謝。本研究第一部分首先就花蓮改良場近年雜交育種的幾種山苦瓜品系,檢測比較其三萜類化合物與 CLN 含量,並分析其活化 PPARα 與 LXRα 之轉錄活性,以初步篩選出改善代謝異常效果最好之品系。結果顯示,品系 55M 、 H4 (花蓮四號) 與 N81 之三萜類化合物較高,而 CLN 含量以 55M 與 N81 較高。活化 PPARα 之轉錄活性以 CKP55 、 1758 與 V81 較高。另外,本研究首次觀察到山苦瓜萃物具有拮抗 LXRα 轉錄活性,可能具有預防肝中脂質堆積之功效。各品系中以 55M 之拮抗 LXRα 最高, N81 次之。由於此二品系之 EA 萃物中 CLN 含量也是最高,推測拮抗 LXRα 之活性可能與 CLN 有關。進一步以 CLN 進行實驗,結果顯示 CLN 拮抗 LXRα 之活性,且具劑量效應。本研究進一步以高脂飲食誘導 C57BL/6J 小鼠代謝異常之動物模式,探討數種品系山苦瓜於體內模式之效應。研究結果顯示各苦瓜品系皆可改善代謝異常之指標。其中又以品系 H4 於改善血糖、血脂及脂肪組織重量等之幅度,優於其他品系。所有品系山苦瓜皆能有效降低肝臟中三酸甘油酯含量,而品系 55M 、 1758 與 P81 改善肝膽固醇 (mg/liver) 之效果最佳。有趣的是測試品系中,以品系 55M 可促進肝中 LXRα 下游基因 Srebf1 、 Fasn 、 Abcg1 及 Cyp7a1 之表現,且並未促進肝中脂肪堆積。
過去研究指出苷元形式葫蘆烷型三萜類化合物相較於帶醣基之形式有更佳活化 AMPK 之效果。而本實驗室先前研究發現 H4 山苦瓜具有內源性 β-glucosidase ,且在特定催化條件下有效增加山苦瓜 EA 萃物中苷元或帶有短鏈醣基形式三萜類化合物。經動物實驗證實,餵食 37℃ 水解後的山苦瓜凍乾粉末可有效促進肝臟粒線體相關基因表現並減少肝臟脂質堆積。接續先前研究,本部分實驗初步探討各品系山苦瓜水解後 EA 萃物組成分與生物活性之改變。結果顯示品系 H4 山苦瓜有最佳內源性 β-glucosidase活性,經過 37℃ 與 60℃ 水解後 H4 之 EA 萃物以及 60℃ 水解後 CKP55 之 EA萃物中三萜類化合物顯著增加。然而水解後 EA 萃物中 CLN 含量與活化 PPARα 轉錄活性顯著低於未水解萃物。不過,研究結果顯示水解後 EA 萃物拮抗 LXRα 活性顯著高於未水解。接續以上研究結果,最後以 T0901317 誘導 HepG2 細胞三酸甘油酯堆積之模式,探討未水解及水解 H4 山苦瓜 EA 萃物能否透過拮抗 LXRα 轉錄活性抑制肝臟三酸甘油酯合成。研究結果顯示較低劑量的未水解以及60℃ 水解山苦瓜 EA 萃物皆能夠降低 T0901317 誘導的三酸甘油酯增加量,而最後研究也發現 H4 山苦瓜 EA 萃物能夠降低 HepG2 細胞中 LXRα 下游脂肪酸合成相關基因表現。
綜合以上,本研究結果顯示未水解及水解後的山苦瓜皆能夠調節肝臟脂質代謝。而以 LXRα 細胞轉錄活性分析篩選出的品系 55M ,在動物體中也能夠調控 LXRα 目標基因。值得一提的是,這是第一個探討山苦瓜萃物能夠調控 LXRα 轉錄活性的研究,且根據研究結果而推論山苦瓜及 CLN 可能是 LXRα 的選擇性調節劑。
zh_TW
dc.description.abstractObesity and its related chronic diseases, such as type 2 diabetes, hypertension, and non-alcoholic fatty liver disease, become a key issue in public health. Previous studies indicated that bitter gourd can ameliorate hyperglycemia and dyslipidemia. The bioactive compound in bitter gourd have been identified as cucurbitane-type triterpenoids, 9c, 11t, 13t-conjugated linolenic acid (CLN) and peptide, etc. Particularly, triterpenoids can improve hyperglycemia via AMPK to enhance glucose uptake, and CLN can regulate lipid metabolism by PPARα activation.
Multiple cultivars of wild bitter gourd (WBG) have been crossbred by Hualien District Agricultural Research and Extension Station. The first part of this study aims to examine triterpenoids and CLN content in various cultivars of bitter gourd, as well as PPARα and LXRα transactivation activities of bitter gourd ethyl acetate (EA) extract. The results showed that cultivars 55M, H4 and N81 have the highest triterpenoids content. 55M and N81 have the highest CLN content. In the cell-based transactivation assay, EA extracts of CKP55, 1758 and V81 showed the highest transactivation activities of PPARα. Interestingly, WBG EA extracts dose-dependently inhibited the transactivation of T0901317, a synthetic LXRα ligand, and 55M showed the highest inhibition. Based on results from CLN content and LXRα transactivation assay, we speculate that CLN in WBG might modulate transcriptional activities of LXRα.
The first part of this study also examined effects of various cultivars of WBG in an animal study. WBG was supplemented to a high-fat diet and fed C57BL/6J mice for 4 weeks. Among the cultivars, H4 performs outstandingly in ameliorating hyperglycemia and dyslipidemia, as well as fat accumulation in WAT. 55M, 1758 and P81 display advantages in reducing cholesterol accumulation in mice liver. Intriguingly, cultivar 55M up-regulated LXRα-related genes in the liver, including Srebf1, Fasn, Abcg1 and Cyp7a1.
Previous studies reported that triterpenoid aglycones had higher activities than glycoside froms in enhancing glucose uptake of adipocytes. Previous studies in our lab have developed a hydrolysis procedure using the endogenous β-glucosidase of WBG. Previous animal studies in our lab also showed that 37℃ hydrolyzed WBG powder ameliorates the obesity-induced fatty liver more effectively than the non-hydrolyzed WBG. The second part of this study further examined effects of hydrolysis on composition and biological activities in various cultivars of WBG. Among various cultivars tested, H4 has the highest β-glucosidase activity. Triterpenoids content in EA extract of H4 WBG increases sharply under 37℃ and 60℃ hydrolysis as expected. In contrast, CLN content and PPARα transactivation activities of EA extracts decrease after hydrolysis. Surprisingly, antagonistic effect on LXRα significantly elevated after hydrolysis of WBG. The antagonistic effect is further examined in HepG2 cells. The T0901317-induced triglyceride accumulation in these cells was suppressed by lower dose of H4 EA extract. In addition, the mRNA expression levels of genes related to fatty acid synthesis were also down-regulated.
In conclusion, WBG and hydrolyzed WBG both can improve hepatic lipid metabolism. Cultivar selected by the cell-based LXRα transactivation assay, i.e. 55M, also modulate LXRα target genes in animal model. Noticeably, this is the first study that demonstrates WBG extracts can modulate the transactivation activities of LXRα. Results of this study implies that WBG/CLN might act as a “selective modulator” of LXRα.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:30:16Z (GMT). No. of bitstreams: 1
ntu-106-R04b22008-1.pdf: 5549542 bytes, checksum: 4fc5aaf735715904e5bdf9721ae9ee2b (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents總目錄
中文摘要 I
Abstract III
縮寫對照表 V
總目錄 VIII
圖目錄 XI
表目錄 XIII
第一章 緒論 1
第一節 前言 1
第二節 文獻回顧 3
一、 肥胖與代謝症候群 3
二、 肝臟對代謝之調控 4
三、 非酒精性脂肪肝疾病 (Non-alcoholic fatty liver disease, NAFLD) 5
四、 過氧化體增生劑活化受體 (Peroxisome Proliferator-activated Receptors) 6
五、 Liver X Receptor (LXRs) 9
六、 苦瓜 (Bitter Gourd) 13
七、 三萜類化合物 (Triterpenes) 15
八、 共軛脂肪酸 (Conjugated Fatty Acids) 16
九、 山苦瓜內源性酵素水解去醣基 18
第三節 研究目的與實驗架構 20
一、 研究目的與實驗架構 20
二、 實驗架構圖 21
第二章 比較數種山苦瓜品系之生物活性及活性化合物 22
第一節 前言 22
第二節 材料與方法 23
一、 數種品系山苦瓜粉末製備 23
二、 山苦瓜 EA (ethyl acetate) 萃物製備 23
三、 山苦瓜粉末中總三萜類化合物含量分析 23
四、 山苦瓜粉末中 9c, 11t, 13t-conjugated linolenic acid (CLN) 含量分析 24
五、 PPARα 以及LXRα 短暫轉染試驗 24
六、 CHO-K1細胞存活率測定 (MTT染色法) 24
七、 動物飼養 25
八、 Chow diet 25
九、 高脂飲食飼料配製 25
十、 添加山苦瓜高脂飲食飼料配製 26
十一、 禁食血清樣本採集 29
十二、 動物犧牲與取樣 29
十三、 血清葡萄糖濃度分析 29
十四、 血清胰島素濃度分析 30
十五、 血清三酸甘油酯分析 30
十六、 血清總膽固醇分析 31
十七、 肝臟脂質萃取 32
十八、 肝臟三酸甘油酯分析 32
十九、 肝臟總膽固醇分析 33
二十、 肝臟基因 mRNA 表現分析 33
二十一、 數據與統計分析 35
第三節 實驗結果 36
一、 各品系山苦瓜粉末組成分分析 36
二、 各品系山苦瓜 EA 萃物對 PPARα 與 LXRα 轉錄活性影響 38
三、 動物實驗:動物生長情形 40
四、 動物實驗:血清生化分析 42
五、 動物實驗:肝臟脂質與基因表現分析 44
第四節 討論 73
一、 不同品系山苦瓜粉末之組成分與生物活性分析 73
二、 不同品系山苦瓜於體內代謝之效應 77
三、 綜合討論 81
第三章 初探各品系山苦瓜內源性酵素水解作用 89
第一節 前言 89
第二節 材料與方法 90
一、 酵素活性測定 90
二、 蛋白質定量 90
三、 薄層層析法 (TLC, thin layer chromatography) 90
四、 37℃ 與60℃ 內源性酵素水解樣品製備 91
五、 水解後山苦瓜 EA 萃物中三萜類化合物含量分析 92
六、 水解後山苦瓜 EA 萃物中 9c, 11t, 13t-conjugated linolenic acid (CLN) 含量分析 92
七、 PPARα 以及 LXRα 短暫轉染試驗 92
八、 以 LXR 促效劑 T0901317 誘導 HepG2 細胞脂質堆積 93
九、 HepG2 細胞存活率測定 (MTT染色法) 94
十、 HepG2細胞基因 mRNA 表現分析 94
十一、 數據與統計分析 96
第三節 實驗結果 97
一、 不同品系山苦瓜粉末中內源性 β-glucosidase 酵素活性 97
二、 不同品系山苦瓜粉末中內源性 β-glucosidase 酵素活性 97
三、 水解後山苦瓜 EA 萃物生物活性變化 99
四、 山苦瓜及其水解後之 EA 萃物對 HepG2細胞脂質堆積之影響 100
第四節 討論 113
一、 各品系山苦瓜內源性酵素水解後組成分與生物活性之改變 113
二、 山苦瓜及其水解後之 EA 萃物對 HepG2 細胞脂質堆積之影響 115
三、 綜合討論 117
第四章 結論 118
第五章 參考文獻 119
dc.language.isozh-TW
dc.title不同品系山苦瓜及其內源性酵素水解衍生物對肝臟脂質代謝的影響zh_TW
dc.titleEffects of various cultivars of wild bitter gourd and its endogenous enzymatic hydrolysis derivatives on hepatic lipid metabolismen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林甫容,呂紹俊,蘇慧敏,張美鈴
dc.subject.keyword山苦瓜,三?類化合物,肝臟脂質代謝,PPARα,LXRα,zh_TW
dc.subject.keywordwild bitter gourd,triterpenoids,hepatic lipid metabolism,PPARα,LXRα,en
dc.relation.page133
dc.identifier.doi10.6342/NTU201701812
dc.rights.note有償授權
dc.date.accepted2017-08-04
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科技學系zh_TW
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  目前未授權公開取用
5.42 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved