Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用數學科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67370
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳俊全(Chiun-Chuan Chen)
dc.contributor.authorHan-Rong Chenen
dc.contributor.author陳漢嶸zh_TW
dc.date.accessioned2021-06-17T01:29:34Z-
dc.date.available2022-08-08
dc.date.copyright2017-08-08
dc.date.issued2017
dc.date.submitted2017-08-04
dc.identifier.citation[1] E. S. Brown, T. F. Chan, and X. Bresson. Completely convex formulation of the chan-vese image segmentation model. International journal of computer vision, 98(1):103–121, 2012.
[2] T. Chan and L. Vese. An active contour model without edges. In International Conference on Scale-Space Theories in Computer Vision, pages 141–151. Springer, 1999.
[3] T. F. Chan, S. Esedoglu, and M. Nikolova. Algorithms for finding global minimizers of image segmentation and denoising models. SIAM journal on applied mathematics, 66(5):1632–1648, 2006.
[4] W. H. Fleming and R. Rishel. An integral formula for total gradient variation. Archivder Mathematik, 11(1):218–222, 1960.
[5] E. H. Lieb and M. Loss. Analysis, volume 14 of graduate studies in mathematics. American Mathematical Society, Providence, RI,, 4, 2001.
[6] J. Morel and S. Solimini. Variational models for image segmentation: with seven image processing experiments, 1994.
[7] D. Mumford and J. Shah. Optimal approximations by piecewise smooth functions and associated variational problems. Communications on pure and applied mathematics, 42(5):577–685, 1989.
[8] S. Osher and J. A. Sethian. Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi formulations. Journal of computational physics, 79(1):12–49, 1988.
[9] L. A. Vese and T. F. Chan. A multiphase level set framework for image segmentation using the mumford and shah model. International journal of computer vision, 50(3):271–293, 2002.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67370-
dc.description.abstract影像分割為電腦視覺的典型問題之一,而目前最廣泛使用的方法有 thresholding、clustering、graph cuts、以矩陣分解為基礎的方法與以偏微分方程為基礎的方法;Chan-Vese 模型則屬於以偏微分方程為基礎的方法,且已經被廣泛使用在影像分割的問題上。Chan-Vese 方法可以成功地用二相片段常數模型(two-phase piecewise constant model)逼近原始影像,用以辨別該影像的前景與背景,同時該影像分割的邊界由水平集函數所表示。儘管 Chan-Vese 模型能成功將影像分割出兩個區域,但其對應的最佳化問題卻不是凸的(convex)。本論文將描述 Chan-Vese functional 在水平集與凸最佳化上的表述,同時提出 Chan-Vese model 在重疊影像(overlaying image)上做分離的新應用。zh_TW
dc.description.abstractImage segmentation is a classical issue in computer vision and the state-of-the-art methods include thresholding, clustering, graph cuts, matrix decomposition based methods and partial differential equation based methods. The Chan-Vese model which belongs to partial differential equation approaches has been widely used in image segmentation tasks. The Chan-Vese method, typically is used to distinguish the object and the background of the image, successfully fits a two-phase piecewise constant model to the given image and the segmentation boundary is represented implicitly with a level set function. Although Chan-Vese model is able to segment an image into two regions and can get not bad results, the corresponding minimization problem is not convex. This thesis describes the level set formulation and convex formulation of the Chan-Vese functional, and presents a new application to separate an overlaying image which is overlaid by two images by using modified Chan-Vese model.en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:29:34Z (GMT). No. of bitstreams: 1
ntu-106-R03246011-1.pdf: 2029387 bytes, checksum: 925d674e449c908cf25b75adad93061b (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents摘要 iii
Abstract v
1 Introduction 1
1.1 History and the setting of image segmentation . . . . 1
1.2 Introducing level sets . . . . . . . . . . . . . . . 4
1.3 The multiphase level set framework . . . . . . . . . 4
1.4 Problem and Motivation . . . . . . . . . . . . . . . 6
2 The Convex Formulation 9
2.1 Chan-Vese with Known Constants . . . . . . . . . . . 9
2.2 Total Variation-Based Vector-Valued Minimization . . 11
3 Separation of the Overlaying Problem 21
3.1 Four-phase case . . . . . . . . . . . . . . . . . . 21
3.1.1 Experimental Results for Four-phase case . . . . . 23
3.2 Another case . . . . . . . . . . . . . . . . . . . . 25
3.2.1 The Method for simple 3-2-overlaying case . . . . 26
3.2.2 Experimental Result for simple 3-2-overlaying case 28
3.2.3 The Critical 3-2-overlaying case . . . . . . . . . 29
3.2.4 The case beyond the 3-2-overlaying . . . . . . . . 31
4 Conclusion and Future Work 35
4.1 Conclusion . . . . . . . . . . . . . . . . . . . . . 35
4.2 Future Work . . . . . . . . . . . . . . . . . . . . 36
Bibliography 37
dc.language.isoen
dc.subject影像分割zh_TW
dc.subject重疊影像zh_TW
dc.subject水平集zh_TW
dc.subjectoverlaying imageen
dc.subjectChan-Vese segmentationen
dc.subjectlevel seten
dc.titleChan-Vese functional 及其應用zh_TW
dc.titleChan-Vese functional and its applicationen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳宜良(I-Liang Chern),王藹農(AI-NUNG WANG)
dc.subject.keyword影像分割,水平集,重疊影像,zh_TW
dc.subject.keywordChan-Vese segmentation,level set,overlaying image,en
dc.relation.page40
dc.identifier.doi10.6342/NTU201702549
dc.rights.note有償授權
dc.date.accepted2017-08-04
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept應用數學科學研究所zh_TW
顯示於系所單位:應用數學科學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
1.98 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved