請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67367完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王珮玲(Pei-Ling Wang) | |
| dc.contributor.author | Tzu-Hao Huang | en |
| dc.contributor.author | 黃子灝 | zh_TW |
| dc.date.accessioned | 2021-06-17T01:29:27Z | - |
| dc.date.available | 2022-08-25 | |
| dc.date.copyright | 2017-08-25 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-04 | |
| dc.identifier.citation | Bau, M. and Möller, P. (1992) Rare earth element fractionation in metamorphogenic hydrothermal calcite, magnesite and siderite. Mineralogy and Petrology 45, 231-246.
Bergman, S.C., Huntington, K.W. and Crider, J.G. (2013) Tracing paleofluid sources using clumped isotope thermometry of diagenetic cements along the Moab Fault, Utah. American Journal of Science 313, 490-515. Bons, P.D., Elburg, M.A. and Gomez-Rivas, E. (2012) A review of the formation of tectonic veins and their microstructures. Journal of Structural Geology 43, 33-62. Boullier, A.M., Yeh, E.C., Boutareaud, S., Song, S.R. and Tsai, C.H. (2009) Microscale anatomy of the 1999 Chi‐Chi earthquake fault zone. Geochemistry, Geophysics, Geosystems 10, Q03016. Bradbury, K.K., Evans, J.P., Chester, J.S., Chester, F.M. and Kirschner, D.L. (2011) Lithology and internal structure of the San Andreas fault at depth based on characterization of Phase 3 whole-rock core in the San Andreas Fault Observatory at Depth (SAFOD) borehole. Earth and Planetary Science Letters 310, 131-144. Cao, J., Jin, Z., Hu, W., Zhang, Y., Yao, S., Wang, X., Zhang, Y. and Tang, Y. (2010) Improved understanding of petroleum migration history in the Hongche fault zone, northwestern Junggar Basin (northwest China): Constrained by vein-calcite fluid inclusions and trace elements. Marine and Petroleum Geology 27, 61-68. Chang, C.-C. (2000) Spatial and Temporal Variation of 18O in the Sea Water from the Taiwan Strait, Department of Oceanography. National Sun Yat-sen University, Kaohsiung, pp. 1-114. Chen, W.-S., Yu, H.-S., Yu, T.-F., Chung, S.-L., Lin, C.-H., Lin, C.-W., Yu, N.-T., Wu, Y.-M. and Wang, K.-L. (2016) An Introduction to the Geology of Taiwan, 1 ed. Geological Society of Taiwan, Taipei. Chou, Y.M., Song, S.R., Aubourg, C., Song, Y.F., Boullier, A.M., Lee, T.Q., Evans, M., Yeh, E.C. and Chen, Y.M. (2012) Pyrite alteration and neoformed magnetic minerals in the fault zone of the Chi‐Chi earthquake (Mw7. 6, 1999): Evidence for frictional heating and co‐seismic fluids. Geochemistry, Geophysics, Geosystems 13, Q08002. Cruset, D., Cantarero, I., Travé, A., Vergés, J. and John, C.M. (2016) Crestal graben fluid evolution during growth of the Puig-reig anticline (South Pyrenean fold and thrust belt). Journal of Geodynamics 101, 30-50. Cummins, R.C., Finnegan, S., Fike, D.A., Eiler, J.M. and Fischer, W.W. (2014) Carbonate clumped isotope constraints on Silurian ocean temperature and seawater δ 18 O. Geochimica et Cosmochimica Acta 140, 241-258. Dennis, K.J., Affek, H.P., Passey, B.H., Schrag, D.P. and Eiler, J.M. (2011) Defining an absolute reference frame for ‘clumped’isotope studies of CO2. Geochimica et Cosmochimica Acta 75, 7117-7131. Duan, Q., Yang, X., Ma, S., Chen, J. and Chen, J. (2016) Fluid–rock interactions in seismic faults: Implications from the structures and mineralogical and geochemical compositions of drilling cores from the rupture of the 2008 Wenchuan earthquake, China. Tectonophysics 666, 260-280. Eiler, J.M. (2007) “Clumped-isotope” geochemistry—The study of naturally-occurring, multiply-substituted isotopologues. Earth and Planetary Science Letters 262, 309-327. Eiler, J.M. (2011) Paleoclimate reconstruction using carbonate clumped isotope thermometry. Quaternary Science Reviews 30, 3575-3588. Faulkner, D., Jackson, C., Lunn, R., Schlische, R., Shipton, Z., Wibberley, C. and Withjack, M. (2010) A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. Journal of Structural Geology 32, 1557-1575. Gabitov, R.I. and Watson, E.B. (2006) Partitioning of strontium between calcite and fluid. Geochemistry, Geophysics, Geosystems 7, Q11004. Ghosh, P., Adkins, J., Affek, H., Balta, B., Guo, W., Schauble, E.A., Schrag, D. and Eiler, J.M. (2006) 13 C–18 O bonds in carbonate minerals: A new kind of paleothermometer. Geochimica et Cosmochimica Acta 70, 1439-1456. Goddard, J.V. and Evans, J.P. (1995) Chemical changes and fluid-rock interaction in faults of crystalline thrust sheets, northwestern Wyoming, USA. Journal of Structural Geology 17, 533-547. Hirono, T., Tsunogai, U., Maegawa, K., Toki, T., Tanimizu, M., Soh, W., Lin, W., Yeh, E.-C., Song, S.-R. and Wang, C.-Y. (2007) Chemical and isotopic characteristics of interstitial fluids within the Taiwan Chelungpu fault. Geochemical Journal 41, 97-102. Ho, C.-S. (1986) An Introduction to the Geology of Taiwan: Explanatory Text of the Geologic Map of Taiwan., 2 ed. Central Geological Survey, Taipei. Hoefs, J. (2008) Stable isotope geochemistry. Springer Science & Business Media. Hubbert, M.K. and Rubey, W.W. (1959) Role of fluid pressure in mechanics of overthrust faulting I. Mechanics of fluid-filled porous solids and its application to overthrust faulting. Geological Society of America Bulletin 70, 115-166. Huntington, K.W., Budd, D.A., Wernicke, B.P. and Eiler, J.M. (2011) Use of clumped-isotope thermometry to constrain the crystallization temperature of diagenetic calcite. Journal of Sedimentary Research 81, 656-669. Huntington, K.W. and Lechler, A.R. (2015) Carbonate clumped isotope thermometry in continental tectonics. Tectonophysics 647, 1-20. Ishikawa, T., Tanimizu, M., Nagaishi, K., Matsuoka, J., Tadai, O., Sakaguchi, M., Hirono, T., Mishima, T., Tanikawa, W. and Lin, W. (2008) Coseismic fluid–rock interactions at high temperatures in the Chelungpu fault. Nature Geoscience 1, 679-683. Italiano, F., Bonfanti, P., Pizzino, L. and Quattrocchi, F. (2010) Geochemistry of fluids discharged over the seismic area of the Southern Apennines (Calabria region, Southern Italy): Implications for Fluid-Fault relationships. Applied Geochemistry 25, 540-554. James, R.H., Allen, D.E. and Seyfried, W. (2003) An experimental study of alteration of oceanic crust and terrigenous sediments at moderate temperatures (51 to 350 C): Insights as to chemical processes in near-shore ridge-flank hydrothermal systems. Geochimica et Cosmochimica Acta 67, 681-691. Janssen, C., Laube, N., Bau, M. and Gray, D.R. (1998) Fluid regime in faulting deformation of the Waratah Fault Zone, Australia, as inferred from major and minor element analyses and stable isotopic signatures. Tectonophysics 294, 109-130. Kim, S.-T. and O'Neil, J.R. (1997) Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochimica et Cosmochimica Acta 61, 3461-3475. Kluge, T., John, C.M., Jourdan, A.-L., Davis, S. and Crawshaw, J. (2015) Laboratory calibration of the calcium carbonate clumped isotope thermometer in the 25–250 C temperature range. Geochimica et Cosmochimica Acta 157, 213-227. Kuo, L.-W., Song, S.-R., Yeh, E.-C., Chen, H.-F. and Si, J. (2012) Clay mineralogy and geochemistry investigations in the host rocks of the Chelungpu fault, Taiwan: Implication for faulting mechanism. Journal of Asian Earth Sciences 59, 208-218. Kuo, L.W., Song, S.R., Yeh, E.C. and Chen, H.F. (2009) Clay mineral anomalies in the fault zone of the Chelungpu Fault, Taiwan, and their implications. Geophysical research letters 36, L18306. Labaume, P., Carrio-Schaffhauser, E., Gamond, J.-F. and Renard, F. (2004) Deformation mechanisms and fluid-driven mass transfers in the recent fault zones of the Corinth Rift (Greece). Comptes Rendus Geoscience 336, 375-383. Lin, A., Tanaka, N., Uda, S. and Satish-Kumar, M. (2003) Repeated coseismic infiltration of meteoric and seawater into deep fault zones: a case study of the Nojima fault zone, Japan. Chemical Geology 202, 139-153. Luetkemeyer, P.B., Kirschner, D.L., Huntington, K.W., Chester, J.S., Chester, F.M. and Evans, J.P. (2016) Constraints on paleofluid sources using the clumped-isotope thermometry of carbonate veins from the SAFOD (San Andreas Fault Observatory at Depth) borehole. Tectonophysics 690, 174-189. Ma, K.F., Brodsky, E.E., Mori, J., Ji, C., Song, T.R.A. and Kanamori, H. (2003) Evidence for fault lubrication during the 1999 Chi‐Chi, Taiwan, earthquake (Mw7. 6). Geophysical Research Letters 30, 1244. Ma, K.F., Lee, C.T., Tsai, Y.B., Shin, T.C. and Mori, J. (1999) The Chi‐Chi, Taiwan earthquake: Large surface displacements on an inland thrust fault. Eos, Transactions American Geophysical Union 80, 605-611. McLennan, S.M. (1989) Rare earth elements in sedimentary rocks; influence of provenance and sedimentary processes. Reviews in Mineralogy and Geochemistry 21, 169-200. Olsen, M.P., Scholz, C.H. and Léger, A. (1998) Healing and sealing of a simulated fault gouge under hydrothermal conditions: Implications for fault healing. Journal of Geophysical Research: Solid Earth 103, 7421-7430. Peng, T.-R., Wang, C.-H., Huang, C.-C., Fei, L.-Y., Chen, C.-T.A. and Hwong, J.-L. (2010) Stable isotopic characteristic of Taiwan's precipitation: A case study of western Pacific monsoon region. Earth and Planetary Science Letters 289, 357-366. Pili, E., Poitrasson, F. and Gratier, J.-P. (2002) Carbon–oxygen isotope and trace element constraints on how fluids percolate faulted limestones from the San Andreas Fault system: partitioning of fluid sources and pathways. Chemical Geology 190, 231-250. Rutter, E. (1983) Pressure solution in nature, theory and experiment. Journal of the Geological Society 140, 725-740. Rye, D.M. and Bradbury, H.J. (1988) Fluid flow in the crust; an example from a Pyrenean thrust ramp. American Journal of Science 288, 197-235. Sahlstedt, E., Karhu, J.A., Pitkänen, P. and Whitehouse, M. (2016) Biogenic processes in crystalline bedrock fractures indicated by carbon isotope signatures of secondary calcite. Applied Geochemistry 67, 30-41. Sakaguchi, A., Yanagihara, A., Ujiie, K., Tanaka, H. and Kameyama, M. (2007) Thermal maturity of a fold–thrust belt based on vitrinite reflectance analysis in the Western Foothills complex, western Taiwan. Tectonophysics 443, 220-232. Schaller, J. (2014) Bioturbation/bioirrigation by Chironomus plumosus as main factor controlling elemental remobilization from aquatic sediments? Chemosphere 107, 336-343. Schleicher, A.M., Tourscher, S.N., van der Pluijm, B.A. and Warr, L.N. (2009) Constraints on mineralization, fluid‐rock interaction, and mass transfer during faulting at 2–3 km depth from the SAFOD drill hole. Journal of Geophysical Research: Solid Earth 114. Siman-Tov, S., Affek, H.P., Matthews, A., Aharonov, E. and Reches, Z.e. (2016) Shear heating and clumped isotope reordering in carbonate faults. Earth and Planetary Science Letters 445, 136-145. Song, S.-R., Kuo, L.-W., Yeh, E.-C., Wang, C.-Y., Hung, J.-H. and Ma, K.-F. (2007) Characteristics of the lithology, fault-related rocks and fault zone structures in TCDP Hole-A. Terrestrial, Atmospheric and Oceanic Sciences 18, 243-269. Swanson, E.M., Wernicke, B.P., Eiler, J.M. and Losh, S. (2012) Temperatures and fluids on faults based on carbonate clumped–isotope thermometry. American Journal of Science 312, 1-21. Tanaka, H., Chen, W., Kawabata, K. and Urata, N. (2007) Thermal properties across the Chelungpu fault zone and evaluations of positive thermal anomaly on the slip zones: Are these residuals of heat from faulting? Geophysical Research Letters 34, L01309. Tanaka, H., Chen, W., Wang, C., Ma, K., Urata, N., Mori, J. and Ando, M. (2006) Frictional heat from faulting of the 1999 Chi‐Chi, Taiwan earthquake. Geophysical research letters 33, L16316. Toy, V.G., Boulton, C.J., Sutherland, R., Townend, J., Norris, R.J., Little, T.A., Prior, D.J., Mariani, E., Faulkner, D. and Menzies, C.D. (2015) Fault rock lithologies and architecture of the central Alpine fault, New Zealand, revealed by DFDP-1 drilling. Lithosphere, L395. 391. Viesca, R.C. and Garagash, D.I. (2015) Ubiquitous weakening of faults due to thermal pressurization. Nature Geoscience 8, 875-879. Wang, P.L., Wu, J.J., Yeh, E.C., Song, S.R., Chen, Y.G. and Lin, L.H. (2010) Isotopic constraints of vein carbonates on fluid sources and processes associated with the ongoing brittle deformation within the accretionary wedge of Taiwan. Terra Nova 22, 251-256. Wang, Z., Schauble, E.A. and Eiler, J.M. (2004) Equilibrium thermodynamics of multiply substituted isotopologues of molecular gases. Geochimica et Cosmochimica Acta 68, 4779-4797. Wogelius, R.A., Fraser, D.G., Wall, G.R. and Grime, G.W. (1997) Trace element and isotopic zonation in vein calcite from the Mendip Hills, UK, with spatial-process correlation analysis. Geochimica et Cosmochimica Acta 61, 2037-2051. Wu, J.J. (2006) Oxygen and Carbon Isotopic Studies of Carbonate Minerals from TCDP Hole-A Drill Cores in Taiwan, Institute of Oceanography. National Taiwan University, Taipei, pp. 1-81. You, C.-F., Castillo, P., Gieskes, J., Chan, L. and Spivack, A. (1996) Trace element behavior in hydrothermal experiments: implications for fluid processes at shallow depths in subduction zones. Earth and Planetary Science Letters 140, 41-52. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67367 | - |
| dc.description.abstract | 斷層活動對於地殼演化扮演著重要的角色,其中流體為影響斷層活動的重要因子之一。高孔隙水壓會降低岩石有效正向力,進而使斷層易於滑動。流體進入斷層帶會與岩石進行岩水交換反應,促使新礦物形成與元素重新分布,流體後期結晶充填於破裂帶中,則會降低岩石滲透率,使流體不易再進入滑移帶進而提升斷層強度。然而流體化學成份與斷層活動機制之間的關聯性研究還相對稀少,且兩者之間的關係未被完全釐清。
本研究分析來自於車籠埔鑽井計畫中岩心A井中方解石脈穩定同位素成份及元素含量,探討流體成分及溫度。分析結果顯示方解石脈的鐵、鎂、鋰、鈹、鉛、銣、釷及銫濃度在車籠埔斷層帶周圍均有相對高值,相反地斷層帶周圍方解石脈的鍶濃度有相對低值。上述的濃度變化趨勢與前人車籠埔斷層滑移帶中岩石濃度變化趨勢相反,可能由於斷層錯動造成摩擦熱熔融了綠泥石和黃鐵礦而釋出部分元素,以及高溫環境下的岩水交換反應,使得流體中元素重新分布。碳酸鹽叢同位素溫度計分析結果顯示車籠埔斷層帶附近的流體溫度大多小於攝氏100度,且流體的氧同位素值較小。相反的斷層帶以外的流體溫度皆高於攝氏100度,且流體的氧同位素值較大。流體溫度及同位素資料顯示遠離斷層帶的流體以地層水為主,而斷層帶附近的流體則是以地層水及天水混合。藉由研究斷層帶與其周遭方解石脈化學成份及溫度紀錄,顯示斷層活動促使了岩石及流體元素重新分布,並可能提供了流體通道使天水從淺層遷移至深處斷層帶。 | zh_TW |
| dc.description.abstract | Fault activities play a key role in crustal evolution. Fluid appears to be one of the most important factors controlling the behaviour of fault zone. High pore-water pressure reduces the effective normal stress of a fault, providing a lubricating agent to trigger fault slip. In addition, the fluid-rock interactions within a fault zone would redistribute the elemental composition between fluid and wall rock, leading to the change the rock composition. The subsequent precipitation in fracture from fluid reduces the permeability of a damage zone for fluid transport and enhance the fault zone strength. However, the exact role of the fluid chemical compositions related to faulting mechanisms remains largely unknown. This study aims to constrain the compositions and temperatures of fluids using the isotopic compositions and elemental abundances of calcite veins sampled from the Taiwan Chelungpu-fault Drilling Project (TCDP). The analyses yielded that Fe, Mg, Li, Be, Pb, Rb, Th and Cs concentrations were higher in calcite veins around the Chelungpu fault zone than those from the adjacent formations. For comparison, Sr concentrations exhibited a pattern contrast from the elements described above. The overall pattern is in contrast to that for the host rocks described in a previous study. As calcite veins represent the archive of fluids percolating through the fracture network, such elemental variations could be best explained with the redistribution of elements in the fault zone, which may result from melting of clay minerals and pyrite and high-temperature fluid-rock reaction during the shearing. The carbonate clumped isotope analysis yielded that calcite veins distributed around the Chelungpu fault zone were precipitated at temperatures generally less than 100 °C. Calculation of isotopic equilibrium also indicated that the related fluids were depleted in 18O. In contrast, the fluids of calcite veins outside the fault zone were at temperatures higher than 100 °C and enriched in 18O. These results indicate that fluid source of calcite veins outside the fault zone is the formation water, whereas fault-related fluid sources are the mixture of formation water and meteoric water. Such isotopic and elemental variations across the fault domain suggest that the fault activities facilitate to mobilize elements and provide a fluid conduit that enables the circulation and infiltration of shallow-ranging meteoric water into great depths. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T01:29:27Z (GMT). No. of bitstreams: 1 ntu-106-R04241308-1.pdf: 4698446 bytes, checksum: 1dc7f22eb48793d4f2e7d324b898f6c0 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 致謝 ii
摘要 iii Abstract iv Chapter 1. Introduction 1 Chapter 2. Material and methods 7 2.1 Geological setting 7 2.2 Sample collection and pretreatment 9 2.3 Elemental analysis 9 2.4 Carbonate clumped isotopic analysis 11 Chapter 3. Results 17 3.1 Major and trace elements 17 3.2 Rare earth elements pattern 19 3.3 Clumped isotope 22 Chapter 4. Discussion 25 4.1 Elemental variations of calcite veins in the TCDP cores 25 4.1.1 Type 1 and Type 2 elemental profiles 25 4.1.2 Type 3 elemental profiles 25 4.1.3 Sample at 613.05 mbls 27 4.2 Fault mechanism related to geochemical variations 28 4.2.1 Mineral alteration in the Chelungpu fault zone 28 4.2.2 Fluid-rock interaction induced by the fault activity 29 4.2.3 Fluid sources in the TCDP Hole A 32 4.3 Calcite veins as a record of seismic events 36 4.4 Fluid-flow model in the Chelungpu fault zone 37 Chapter 5. Conclusion 39 References 40 | |
| dc.language.iso | en | |
| dc.subject | 車籠埔斷層 | zh_TW |
| dc.subject | 斷層 | zh_TW |
| dc.subject | 流體 | zh_TW |
| dc.subject | 碳酸鹽叢同位素溫度計 | zh_TW |
| dc.subject | TCDP | en |
| dc.subject | fault | en |
| dc.subject | fluids | en |
| dc.subject | carbonate clumped isotope thermometry | en |
| dc.title | 台灣車籠埔斷層之流體成分及溫度 | zh_TW |
| dc.title | Fluid temperature and composition associated with displacement of the Chelungpu fault in Taiwan | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林立虹(Li-Hung Lin),郭力維(Li-Wei Kuo),朱美妃(Mei-Fei Chu),葉恩肇(En-Chao Yeh) | |
| dc.subject.keyword | 車籠埔斷層,斷層,流體,碳酸鹽叢同位素溫度計, | zh_TW |
| dc.subject.keyword | TCDP,fault,fluids,carbonate clumped isotope thermometry, | en |
| dc.relation.page | 47 | |
| dc.identifier.doi | 10.6342/NTU201702378 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-08-04 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 海洋研究所 | zh_TW |
| 顯示於系所單位: | 海洋研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 4.59 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
