請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67366
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊宏智 | |
dc.contributor.author | Yu-Ting Tsai | en |
dc.contributor.author | 蔡侑庭 | zh_TW |
dc.date.accessioned | 2021-06-17T01:29:25Z | - |
dc.date.available | 2022-08-10 | |
dc.date.copyright | 2017-08-10 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-08-04 | |
dc.identifier.citation | [ 1 ] 「未來製造說了算!德國的章魚戰略:工業4.0」賀桂芬、黃亦筠,天下雜誌(2015)。
[ 2 ] 「猜一猜,什麼是「工業4.0」?」高野敦,商業周刊(2014)。 [ 3 ] 「Automated Optical Metrology Market To Grow At 7.3% CAGR By 2023」,credence reasearch <http://www.credenceresearch.com/press/global-automated-optical-metrology-market> [ 4 ] Jian, C., Gao, J., & Ao, Y. (2017). Automatic surface defect detection for mobile phone screen glass based on machine vision. Applied Soft Computing, 52, 348-358. [ 5 ]Lee, R. T. (2010). Development of a multi-beam laser probe to measure the position and orientation (normal vector) of a freeform surface (Doctoral dissertation). [ 6 ]Le, M. T., Chen, L. C., & Lin, C. J. (2017). Reconstruction of accurate 3-D surfaces with sharp edges using digital structured light projection and multi-dimensional image fusion. Optics and Lasers in Engineering, 96, 17-34. [ 7 ] 呂建德. (2009). 以結構光為基礎的3D立體物件自動掃描系統研究. 中華大學資訊工程所學位論文, 1 – 62 [ 8 ] 「精密量測」,范光照,張郭益,精密量測(2015). [ 9 ] Yang, S. W., Lin, C. S., & Lin, S. K. (2013). 3D surface profile measurement of unsymmetrical microstructure using Fizeau interferometric microscope. Optics and Lasers in Engineering, 51(4), 348-357. [ 10 ] Rao, K. D., Udupa, D. V., Prathap, C., Rathod, A., Balasubramaniam, R., & Sahoo, N. K. (2015). Optical coherence tomography for shape and radius of curvature measurements of deeply curved machined metallic surfaces: a comparison with two-beam laser interferometry. Optics and Lasers in Engineering, 66, 204-209. [ 11 ]Boltryk, P. J., Hill, M., McBride, J. W., & Nasce, A. (2008). A comparison of precision optical displacement sensors for the 3D measurement of complex surface profiles. Sensors and Actuators A: Physical, 142(1), 2-11. [ 12 ] Zhou, D. W., Gambaryan-Roisman, T., & Stephan, P. (2009). Measurement of water falling film thickness to flat plate using confocal chromatic sensoring technique. Experimental Thermal and Fluid Science, 33(2), 273-283. [ 13 ] Hong, C., & Ibaraki, S. (2013). Non-contact R-test with laser displacement sensors for error calibration of five-axis machine tools. Precision Engineering, 37(1), 159-171. [ 14 ] Andersson, P., & Hemming, B. (2015). Determination of wear volumes by chromatic confocal measurements during twin-disc tests with cast iron and steel. Wear, 338, 95-104. [ 15 ] Winogrodzka, A., Valefi, M., de Rooij, M. B., & Schipper, D. J. (2014). Measurement of chemical and geometrical surface changes in a wear track by a confocal height sensor and confocal Raman spectroscopy. Archives of civil and mechanical engineering, 14(1), 1-5. [ 16 ] Evans, A. A., & Donahue, R. E. (2008). Laser scanning confocal microscopy: a potential technique for the study of lithic microwear. Journal of Archaeological Science, 35(8), 2223-2230. [ 17 ] Li, Y., Yang, Y., Sun, X., Yang, D., Zhang, N., Yang, H., ... & Zheng, J. (2014). The application of laser confocal method in microscopic oil analysis. Journal of Petroleum Science and Engineering, 120, 52-60. [ 18 ] Baburaj, M., Ghosh, A., & Shunmugam, M. S. (2017). Study of micro ball end mill geometry and measurement of cutting edge radius. Precision Engineering, 48, 9-17. [ 19 ] 陳昭男. (2009). 彩色共焦顯微三維形貌量測術之研發. 臺北科技大學自動化科技研究所學位論文, 1-130. [ 20 ] Chen, L. C., Chang, Y. W., & Li, H. W. (2012). Full-field chromatic confocal surface profilometry employing digital micromirror device correspondence for minimizing lateral cross talks. Optical Engineering, 51(8), 081507-1. [ 21 ] Steger, C., Ulrich, M., & Wiedemann, C. (2008). Machine vision algorithms and applications. Illumination, 5(2.1), 1. [ 22 ] 陳立民. (2015). 微型三次元量測儀在高精度恆溫環境下之研究. 臺灣大學機械工程學研究所學位論文, 1-104. [ 23 ] Gonzalez, R. S., & Wintz, P. (1977). Digital image processing. [ 24 ] 江政隆. (2016). 低對比生物晶片影像之瑕疵檢測. 臺灣大學機械工程學研究所學位論文, 1-88. [ 25 ] 「精度理論」,范光照,量測技術應用(2013)。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67366 | - |
dc.description.abstract | 3D曲面玻璃螢幕是近年來科技產業的新風潮,舉凡智慧型手機、電視螢幕與穿戴式電子零件等等,都能看見曲面玻璃的廣泛應用。然而,目前曲面玻璃在生產時之瑕疵規格檢測方法仍未臻成熟,設計開發一套標準化的檢測流程,對於曲面玻璃的品質管理與生產成本控制是非常重要的。
本研究提出一套非接觸式的檢查方法,並搭配應用自動化光學檢測的技術,檢驗入料之3D曲面玻璃螢幕圓角是否符合規格。每片待測玻璃在置放於檢測平台時,先經由輪廓特徵註冊法做位置校正,接著使用彩色共軛焦鏡頭進行掃描,探頭會依據曲面玻璃輪廓的變化,而以不同的傾斜角度量測。座標數據透過雜訊處理以及曲線擬合後,即能迅速地獲得曲面玻璃的倒角尺寸、平面輪廓、玻璃厚度與長寬高規格尺寸。 本研究設計開發之檢測機台,量測重複性可達到30μm,量測時間與三次元量床的接觸式掃描方法相比,可大幅度地減少。測試結果成功地證明此套檢測系統,可更有效地檢驗3D曲面玻璃螢幕之輪廓尺寸與圓角,並提供準確之檢測資訊。 | zh_TW |
dc.description.abstract | Curved Glass has been widely applied to many electronic devices like mobile phones, TV screens and wearable devices. Investigation into the defect inspection of curved glass is significant for manufacturing process since there are few standard inpection methods.This paper proposes a non-contact inspecting approach with automated optical inspection (AOI) technique to distinguish flawed curved glasses from qualified ones. A contour-based registration method is used to align curved glass on the stage, which is subsequently measured by chromatic confocal microscopy tilted at several angles. The contour of chamering, inclination of surface and thickness are obtained by fitting processed coordinate data. Gauge repeatibility was achieved to 30μm and inspection time was reduced largely compared to that of contact measuring method with coordinate-measuring machine. The testing results demonstrate that the proposed defect detection system can effectively inspect curved glasses with accuracy. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T01:29:25Z (GMT). No. of bitstreams: 1 ntu-106-R04522707-1.pdf: 5455266 bytes, checksum: e84acfba19e4f3e83c893175c9f5688f (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 誌謝 I
摘要 II Abstract III 目錄 IV 表目錄 VII 圖目錄 IX 第一章 緒論 1 1.1 研究背景 1 1.2研究動機 2 1.3 研究目的 2 1.4 研究方法 3 1.5 文獻回顧 5 1.5.1 玻璃檢測方法 5 1.5.2曲面檢測方法 6 1.5.3 彩色共軛焦顯微鏡之應用 9 1.6 小結 13 第二章 曲面玻璃檢測機設計製造原理 14 2.1機台設計原理 14 2.1.1承載平台軸控系統 15 2.1.2曲面玻璃定位系統 16 2.1.3光學模組 19 2.2機台組裝 21 2.3彩色共軛焦顯微鏡原理 24 2.4小結 25 第三章 實驗設備 26 3.1硬體 26 3.1.1量測部分 26 3.1.2定位部分 29 3.1.3軸控部分 30 3.1.4測量實體 34 3.2軟體 35 3.3小結 38 第四章 實驗方法 39 4.1座標定位 40 4.1.1 CCD 與世界座標校正 40 4.1.2 XY 軸控平台與世界座標的校正 42 4.1.3 曲面玻璃與世界座標的校正 43 4.2輪廓度量測 47 4.2.1接觸式探頭 47 4.2.2非接觸式雷射三角法 49 4.2.3非接觸式雷射共軛焦顯微鏡 53 4.3雜訊點過濾 55 4.4曲線擬合 57 4.4.1直線擬合 57 4.4.2圓弧擬合 58 4.5 小結 60 第五章 實驗結果與討論 61 5.1接觸式探頭 61 5.2非接觸式雷射三角法 64 5.3非接觸式彩色共軛焦顯微鏡 67 5.3.1塊規線性度測試與校正 67 5.3.2標準球量測 74 5.3.3曲面玻璃量測 78 5.4三次元量床接觸式檢測 82 5.5曲面玻璃其他規格尺寸量測 83 5.5.1玻璃厚度量測 83 5.5.2長寬規格尺寸量測 85 5.5.3高度量測 89 5.6小結 91 第六章 結論與未來展望 92 6.1結論 92 6.2未來展望 93 參考文獻 95 作者簡歷 98 | |
dc.language.iso | zh-TW | |
dc.title | 3D曲面玻璃檢測機之設計與系統整合 | zh_TW |
dc.title | Designing and System Integration of 3D Curved Glass Inspection Machine | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 唐肇蔚,陳守恆,廖學專 | |
dc.subject.keyword | 彩色共軛焦雷射,曲面玻璃,自動化光學檢測,數位影像處理, | zh_TW |
dc.subject.keyword | Chromatic Confocal Microscopy,Curved Glass,Automated Optical Inspection,Digital Image Processing,Contour-based registration, | en |
dc.relation.page | 98 | |
dc.identifier.doi | 10.6342/NTU201702612 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-08-04 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 5.33 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。