請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67365完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳建錦(Chien-Chin Chen) | |
| dc.contributor.author | Rui-Jun Ye | en |
| dc.contributor.author | 葉芮君 | zh_TW |
| dc.date.accessioned | 2021-06-17T01:29:23Z | - |
| dc.date.available | 2017-08-10 | |
| dc.date.copyright | 2017-08-10 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-04 | |
| dc.identifier.citation | Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transaction on Knowledge and Data Engineering 17, pp. 734–749.
Adomavicius, G., & Tuzhilin, A. (2005). Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions. IEEE Transaction on knowedge and data engineering, pp. 734-729. Antoniak, C. E. (1974, 11). Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. The Annals of Statistics, 2(6), pp. 1152-1174. Baets, B. D. (2003). Growing decision trees in an ordinal setting. International Journal of Intelligent Systems. Belkin, N. J., & Croft, W. B. (1992). Information filtering and information retrieval: two sides of the same coin? Communications of the ACM, 35, pp. 29-38. Breese, J. S., Heckerman, D., & Kadie, C. (1998). Empirical analysis of predictive algorithms for collaborative filtering. UAI'98 Proceedings of the Fourteenth conference on Uncertainty in artificial intelligence, pp. 43-52. Burges, C. J., Ragno, R., & Le, Q. V. (2006). Learning to rank with nonsmooth cost functions. NIPS'06 Proceedings of the 19th International Conference on Neural Information Processing Systems, pp. 193-200 . Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., & Hullender, G. (2005). Learning to rank using gradient. ICML '05 Proceedings of the 22nd international conference on Machine learning, pp. 89 - 96 . CAO, Y., XU, J., LIU, T.-Y., LI, H., HUANG, Y., & HON, H.-W. (2006 ). Adapting ranking svm to document retrieval. SIGIR '06 Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 186-193. Cao, Z., Qin, T., Liu, T.-Y., Tsai, M.-F., & Li, H. (2007). Learning to Rank: From Pairwise Approach to Listwise Approach. Proceedings of the 24th International Conference on Machine Learning, Corvallis, OR. Chee, H. S., Han, J., & Wang, K. (2001). RecTree: An Efficient Collaborative Filtering Method. Lecture Notes in Computer Science book series (LNCS, volume 2114), pp. 141–151. Chee, S. H., Han, J., & Wang, K. (2006). Being accurate is not enough: how accuracy metrics have hurt recommender systems. CHI EA '06 CHI '06 Extended Abstracts on Human Factors in Computing Systems, pp. 1097-1101. Chee, S., Han, J., & Wang, K. (2001). RecTree: An efficient collabo- rative filtering method. In Data Warehousing and Knowledge Discovery (DaWaK). Deerwester, S., Dumais, S. T., & Harshman, R. (1990). Indexing by latent semantic analysis. Journal of the American Society for Information Science. Dempster, A., Laird, N., & Rubin, D. (1977). Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39(1), pp. 1-38. Dyer, M., Frieze, A. M., & Kannan, R. (1991). Polynomial-time algorithm for approximating the volume of convex bodies. Journal of the ACM. Ferguson, T. S. (1973). A Bayesian Analysis of Some Nonparametric Problems. Ann. Statist., pp. 209-230. Freund, Y., Iyer, R., Robert, S. E., & Singer, Y. (2003). An efficient boosting algorithm for combining preferences. Journal of Machine Learning Research, pp. 933-969. Ghahramani, Z., & Jordan, M. I. (1996). Factorial hidden Markov models. Proc. Neural Information Processing Systems, 8. Herbrich, R., Thore, G., & Obermayer, K. (1999). Support vector learning for ordinal regression. Artificial Neural Networks, 1999. ICANN 99. Ninth International Conference on (Conf. Publ. No. 470), pp. 97-102. Herlocker, J. L., Konstan, J. A., & Riedl, J. (2000). Explaining collaborative filtering recommendations. In Proceedings of the 2000 ACM conference on Computer supported cooperative work,, pp. 241–250. Hofmann, T. (2003). Probabilistic Rating Models: methods for collaborative filtering based on unsupervised learning of specialized probabilistic models. . Proceeding SIGIR '03 Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval , pp. 259-266 . Hofmann, T. (2004). Latent semantic models for collaborative filtering. ACM Transactions on Information Systems (TOIS), pp. 89-115. Hoi, S., & Jin, R. (2008). Semi-Supervised Ensemble Ranking. AAAI'08 Proceedings of the 23rd national conference on Artificial intelligence - Volume 2, pp. 634-639 . Järvelin, K., & Kekäläinen, J. (2000 ). IR evaluation methods for retrieving highly relevant documents. SIGIR '00 Proceedings of the 23rd annual international ACM SIGIR conference on Research and development in information retrieval, pp. 41-48 . Jin, R., Valizadegan, H., & Li, H. (2008). Ranking refinement and its application to infor- mation retrieval. WWW '08 Proceedings of the 17th international conference on World Wide Web, pp. 397-406. John, C. (2002). Collaborative filtering with privacy. In Proceedings of the IEEE Symposium on Security and Privacy, pp. 45–57. Koren, Y., Bell , R., & Volinsky, C. (2009). Matrix factorization tech- niques for recommender systems. IEEE Computer, pp. 30-37. Li, P., Burges, C. J., & Wu, Q. (2007). Learning to Rank Using Multiple Classification and Gradient Boosting. Proc. 21st Proc. of Advances in Neural Information Processing Systems. Linden, G., Smith, B., & York, J. (2003). Amazon. com recommendations: Item-to-item. Published by the IEEE Computer Society. Little, R. J., & Rubin, D. B. (2002). Statistical analysis with missing data. Liu, T.-Y. (2009). Learning to Rank for Information Retrieval. Foundations and Trends® in Information Retrieval: Vol. 3: No. 3, pp. 225-331. Marlin, B. (2003). Modeling user rating profiles for collaborative filtering. In Pro- ceedings of the Seventeenth Annual Conference on Neural Information Processing Systems. Marlin, B. (2004). Collaborative filtering A machine learning perspective. pp. 82-96. Marlin, B. (2004). Collaborative Filtering: A Machine Learning Perspective. M.S. thesis. Marlin, B. M., & Zemel, R. S. (2009). Collaborative Prediction and Ranking with Non-Random Missing Data. RecSys '09 Proceedings of the third ACM conference on Recommender systems, pp. 5-12. McLachlan, G., & Peel, D. (2000). Finite mixture models. Wiley series in Probability and Mathematical Statistics: Applied Probability and Statistics Section. John Wiley & Sons. McLaughlin, M. R., & Herlocker, J. L. (n.d.). A collaborative filtering algorithm and evaluation metric that accurately model the user experience. SIGIR '04 Proceedings of the 27th annual international ACM SIGIR conference on Research and development in information retrieval. Miyahara, K., & Pazzani, M. J. (2000). Collaborative filtering with the simple bayesian classifier. Proceeding PRICAI'00 Proceedings of the 6th Pacific Rim international conference on Artificial intelligence, pp. 679-689. Miyahara, K., & Pazzani, M. J. (2000). Collaborative Filtering with the Simple Bayesian Classifier. Proceeding PRICAI'00 Proceedings of the 6th Pacific Rim international conference on Artificial intelligence, pp. 679-689. Muthén, L. K., & Muthén, B. O. (2010). Mplus user's guide. Muthén & Muthén. Nallapati, R. (2004). Discriminative models for information retrieval. Proceedings of the 27th annual international ACM SIGIR conference on Research and development in information retrieva. Pessiot, J.-F., Truong, T.-V., Usunier, N., Amini, M.-R., & Gallinari, P. (2007). Learning to rank for collaborative filtering. Proceedings of the Ninth International Conference on Enterprise Information Systems. QIN, T., LIU, T.-Y., Tsa, M.-F., ZHANG, X.-D., & Li, H. (2006). Learning to search web pages with query-level loss functions. Technical Report. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., & Riedl, J. (1994). GroupLens: an open architecture for collaborative filtering of netnews. ACM conference on Computer supported cooperative work, pp. 175-186. Su, X., & Khoshgoftaar, T. M. (2006). Collaborative Filtering for Multi-class Data Using Belief Nets Algorithms. ICTAI '06 Proceedings of the 18th IEEE International Conference on Tools with Artificial Intelligence, pp. 497-504. Taylor, M., Guiver, J., Robertson, S., & Minka, T. (2008). Softrank: optimizing non- smooth rank metrics. WSDM '08 Proceedings of the 2008 International Conference on Web Search and Data Mining, pp. 77-86 . Tipping , M. E., & Bishop, C. M. (1999). Probabilistic principal component analysis. Journal of the Royal Statistical Society, 61(3), pp. 611–622. Tsai, M.-F., Liu, T.-Y., Qin, T., Chen, H.-H., & Ma, W.-Y. (2007). A ranking method with fidelity loss. SIGIR '07 Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 383-390 . Ungar, L. H., & Foster, D. P. (1998). Clustering methods for collaborative filtering. Proc. Recommender Systems Papers from 1998 Workshop. Volkovs, M. N., & Zemel, R. S. (2009). Learning to maximize expected ranking gain. Proceedings of the 26th Annual International Conference on Machine Learning, pp. 1089-1096. Weimer, M., Karatzoglou, A., & Smola, A. (2008). Adaptive collaborative filtering. In Proceedings of the 2008 ACM conference on Recommender systems, pp. 275–282. Xia, F., Liu, T.-Y., Wang, J., Zhang, W., & Hang , L. (2008). Listwise Approach to Learning to Rank - Theory and Algorithm. Proceedings of the 25 th International Confer- ence on Machine Learning, Helsinki, Finland. Xue, G.-R., Lin, C., Yang, Q., Xi, W., Zeng, H.-J., Yu, Y., & Chen, Z. (2005). Scalable collaborative filtering using cluster-based smoothing. Proceeding SIGIR '05 Proceedings of the 28th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 114-121. Zaffalon, M., & Hutter, M. (2002). Robust feature selection using distributions of mutual information. Proceedings of the 18th International Conference on Uncertainty in Artificial Intelligence, pp. 577–584. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67365 | - |
| dc.description.abstract | 在網路通訊科技的日新月異的世代,資訊過載(information overloading) 的問題普遍存在各種網路應用當中,因此電子商務領域中普遍採用推薦系統(recommender system),幫助使用者取得高品質的資訊。推薦系統基本機制是產生個人化推薦清單,依照個別使用者的喜好順序排列物品,推薦他們可能喜歡,但尚未看過的項目,達到提升顧客體驗與收益的目的。推薦系統的過濾資訊概念分成內容(content-based)與協同(collaborative)兩大方向,協同過濾能簡易且有效的產出衡量喜好指標,並保持推薦項目的差異化,其中混合模型(mixture model)是實踐協同過濾的一種機率模型,是最具彈性及嚴密數學推導的方法。過去推薦系統一直專於準確預測項目喜好分數,近年研究皆指出排序學習(learning to rank)更貼近使用者需求,因此成為了現今推薦系統領域的主要研究方向。本篇論文將混合模型和預測效果最優越的的列表式(listwise)排序法結合,促使混合模型一舉向排序學習領域往前推進,改變傳統模型準確預測分數卻不符合推薦目的的方式,同時也善盡混合模型的參數可擴充性,解決推薦系統的最常見的遺漏值(missing theory)議題。最後在嚴謹的強推論交叉驗證實驗中,證實了模型優化混合模型的可能性,成功地讓機率模型在推薦系統領域中更加完整。 | zh_TW |
| dc.description.abstract | Facing the rapid growing volume of information across the internet, most of commercial websites have adopted recommender systems to help their customers get valuable information efficiently. As the goal of recommender systems is to provide a ranking list of items according to user preferences, ranking has become the core of the systems. In recent year, a novel technique called learning to rank (LTR) which resolves ranking problem with machine learning algorithms has attracted researchers of recommender systems. In this paper, we investigate learning to rank and recommender systems. Specifically, we incorporate the listwise learning to rank approach into a mixture model(MM) to learn the preferences of users in a recommender system. The listwise LTR approach has been shown significantly better than the pointwise and pairwise approaches because it takes a whole ranking list of items as a learning instance that matches the goal of recommender systems. Also, the MM is effective in modelling user preferences that enhance collaborative filtering (CF) to identify the similar taste users of a target user. In addition to incorporating LTR into recommender systems, we investigate non-random missing data, and introduce effective model parameters to capture the missing mechanism into the MM. Our main contribution is presenting listwise mixture model (list-MM) perfectly incorporate CF, LTR, and MM. This model is processed of accuracy, flexibility, and scalability which is suitable for modern recommender systems. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T01:29:23Z (GMT). No. of bitstreams: 1 ntu-106-R04725045-1.pdf: 2225109 bytes, checksum: 330f2082913d26db79afbec6c6eb1711 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 目 錄
口試委員會審定書 i 中文摘要 ii 英文摘要 iii 1 INTRODUCTION 1 2 RELATED WORKS 3 2.1 Collaborative Filtering 3 2.2 Mixture Model 5 2.3 Dirichlet Process Mixture 5 2.4 Missing Data Theory 6 2.5 Learning to Rank 6 3 MODELS AND ALGORITHMS 8 4 EXPREMENT 10 4.1 Data Collections 10 4.2 Parameter Settings and Optimization Details 12 4.3 Evaluation Metrics 13 4.4 Performance Comparison 14 5 CONCLUSION 15 6 REFERENCE 16 | |
| dc.language.iso | en | |
| dc.subject | 遺漏值理論 | zh_TW |
| dc.subject | 推薦系統 | zh_TW |
| dc.subject | 協同過濾 | zh_TW |
| dc.subject | 排序學習 | zh_TW |
| dc.subject | 列表式學習 | zh_TW |
| dc.subject | 概率圖模型 | zh_TW |
| dc.subject | 混合模型 | zh_TW |
| dc.subject | Missing theory | en |
| dc.subject | Collaborative Filtering Learning to Rank | en |
| dc.subject | Listwise learning | en |
| dc.subject | Recommendation Systems | en |
| dc.subject | Graphical Model | en |
| dc.subject | Mixture Mode | en |
| dc.title | 推薦系統之概率圖模型實踐排序學習探討 | zh_TW |
| dc.title | A Study of Listwise and Graphical model on recommender system | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳孟彰(Meng-Chang Chen),張詠淳(Yung-Chun Chang) | |
| dc.subject.keyword | 推薦系統,協同過濾,排序學習,列表式學習,概率圖模型,混合模型,遺漏值理論, | zh_TW |
| dc.subject.keyword | Recommendation Systems,Collaborative Filtering Learning to Rank,Listwise learning,Graphical Model,Mixture Mode,Missing theory, | en |
| dc.relation.page | 21 | |
| dc.identifier.doi | 10.6342/NTU201702364 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-08-04 | |
| dc.contributor.author-college | 管理學院 | zh_TW |
| dc.contributor.author-dept | 資訊管理學研究所 | zh_TW |
| 顯示於系所單位: | 資訊管理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 2.17 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
