Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67338
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊鏡堂
dc.contributor.authorTzu-Hsuan Houen
dc.contributor.author侯詞軒zh_TW
dc.date.accessioned2021-06-17T01:28:24Z-
dc.date.available2027-08-03
dc.date.copyright2017-08-08
dc.date.issued2017
dc.date.submitted2017-08-04
dc.identifier.citationAzuma, A. (2012). The Biokinetics of Flying and Swimming. Springer Science & Business Media. Tokyo
Betts, C. R., and Wootton, R. J. (1988). Wing shape and flight behaviour in butterflies (Lepidoptera: Papilionoidea and Hesperioidea): a preliminary analysis. Journal of Experimental Biology, 138(1), 271-288.
Birch, J. M., and Dickinson, M. H. (2001). Spanwise flow and the attachment of the leading-edge vortex on insect wings. Nature, 412(6848), 729-733.
Byrne, D. N., Buchmann, S. L., and Spangler, H. G. (1988). Relationship between wing loading, wingbeat frequency and body mass in homopterous insects. Journal of Experimental Biology, 135(1), 9-23.
Chai, P., and Srygley, R. B. (1990). Predation and the flight, morphology, and temperature of neotropical rain-forest butterflies. American Naturalist, 748-765.
Combes, S. A., and Daniel, T. L. (2003). Flexural stiffness in insect wings I. Scaling and the influence of wing venation. Journal of experimental biology, 206(17), 2979-2987.
Dickinson, M. H. (1996). Unsteady mechanisms of force generation in aquatic and aerial locomotion. American Zoologist, 36(6), 537-554.
Dickinson, M. H., Lehmann, F. O., and Sane, S. P. (1999). Wing rotation and the aerodynamic basis of insect flight. Science, 284(5422), 1954-1960.
Dudley, R. (1990). Biomechanics of flight in neotropical butterflies: morphometrics and kinematics. Journal of Experimental Biology, 150(1), 37-53.
Dudley, R. (2002). The Biomechanics of Insect Flight: Form, Function, Evolution. Princeton University Press, New Jersey
Ellington, C. P., Van Den Berg, C., Willmott, A. P., and Thomas, A. L. (1996). Leading-edge vortices in insect flight. Nature, 384(6610), 626-630.
Fei, Y. H. J., and Yang, J. T. (2015). Enhanced thrust and speed revealed in the forward flight of a butterfly with transient body translation. Physical Review E, 92(3), 033004.
Fei, Y. H. J., and Yang, J. T. (2016). Importance of body rotation during the flight of a butterfly. Physical Review E, 93(3), 033124.
Fuchiwaki, M., Kuroki, T., Tanaka, K., and Tababa, T. (2013). Dynamic behavior of the vortex ring formed on a butterfly wing. Experiments in Fluids, 54(1), 1450.
Guo, X., Chen, D., and Liu, H. (2015). Does a revolving wing stall at low Reynolds numbers?. Journal of Biomechanical Science and Engineering, 10(4), 15-00588.
Heathcote, S., Wang, Z., and Gursul, I. (2008). Effect of spanwise flexibility on flapping wing propulsion. Journal of Fluids and Structures, 24(2), 183-199.
Liu, H., and H. Aono. 'Size effects on insect hovering aerodynamics: an integrated computational study.' Bioinspiration & Biomimetics 4.1 (2009): 015002.
Mountcastle, A. M., and Daniel, T. L. (2009). Aerodynamic and functional consequences of wing compliance. Experiments in Fluids, 46(5), 873-882.
Pederzani, J. N., and Haj-Hariri, H. (2006). Numerical analysis of heaving flexible airfoils in a viscous flow. AIAA Journal, 44(11), 2773-2779.
Pines, D. J., and Bohorquez, F. (2006). Challenges facing future micro-air-vehicle development. Journal of Aircraft, 43(2), 290-305.
Sane, S. P. (2003). The aerodynamics of insect flight. Journal of Experimental Biology, 206(23), 4191-4208.
Shyy, W., Trizila, P., Kang, C. K., and Aono, H. (2009). Can tip vortices enhance lift of a flapping wing?. AIAA Journal, 47(2), 289-293.
Srygley, R. B., and Dudley, R. (1993). Correlations of the position of center of body mass with butterfly escape tactics. Journal of Experimental Biology, 174(1), 155-166.
Takahashi, H., Tanaka, H., Matsumoto, K., and Shimoyama, I. (2012). Differential pressure distribution measurement with an MEMS sensor on a free-flying butterfly wing. Bioinspiration & Biomimetics, 7(3), 036020.
Tennekes, H. (2009). The Simple Science of Flight: from Insects to Jumbo Jets. Cambridge, Massachusetts London: MIT press.
Viieru, D., Albertani, R., Shyy, W., and Ifju, P. G. (2005). Effect of tip vortex on wing aerodynamics of micro air vehicles. Journal of Aircraft, 42(6), 1530-1536.
Weisfogh, T. (1973). Quick Estimates of Flight Fitness in Hovering Animals, Including Novel Mechanisms for Lift Production. Journal of Experimental Biology, 59(1): 169-230.
Wu, P., Stanford, B. K., Sällström, E., Ukeiley, L., and Ifju, P. G. (2011). Structural dynamics and aerodynamics measurements of biologically inspired flexible flapping wings. Bioinspiration & Biomimetics, 6(1), 016009.
Yokoyama, N., Senda, K., Iima, M., and Hirai, N. (2013). Aerodynamic forces and vortical structures in flapping butterfly's forward flight. Physics of Fluids, 25(2), 021902.
Zhao, L., Huang, Q., Deng, X., and Sane, S. P. (2010). Aerodynamic effects of flexibility in flapping wings. Journal of the Royal Society Interface, 7(44), 485-497.
Zhu, Q. (2007). Numerical simulation of a flapping foil with chordwise or spanwise flexibility. AIAA Journal, 45(10), 2448-2457.
王相博 (2013)。蝴蝶撲翼姿態對飛行影響之研究。臺灣大學機械工程學系暨研究所碩士論文,台北市
王彥傑 (2016)。腹部動態對蝴蝶仿生飛行器控制之研究。臺灣大學機械工程學系暨研究所碩士論文,台北市
費約翰 (2017)。蝴蝶身體俯仰動態之飛行動力與飛行操控研究。臺灣大學機械工程學系暨研究所博士論文,台北市
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67338-
dc.description.abstract本文透過生物實驗與數值模擬方式分析蝴蝶尺寸對於飛行表現及飛行動態之影響,並從中提出小型蝶類提升翅膀負重與速度調控之機制與策略。實驗首先透過高速攝影機拍攝翼展差異明顯之四種蝴蝶(介於136-44 mm)於實驗箱中進行自由飛行,並篩選蝴蝶於前飛模式下之動態,藉由影像處理軟體對其動作分析。然而,由於實驗中過多參數之影響,造成部分趨勢不明顯,因此本文進一步透過數值模擬方式控制變因,定量分析尺寸差異對於飛行之影響,並比較實驗與模擬所呈現之結果。
實驗量測結果顯示蝴蝶翼面負重與翼展尺寸有正相關的趨勢,相較於數值計算之結果,在飛行動態固定之情況下,蝴蝶平飛時計算之翼面負重會隨翼展迅速下降,數值模擬預測小型蝶類所能承受之翅膀負重相較於真實蝶類不理想;在飛行動態方面,真實小型蝶類之拍撲頻率和身體俯仰振幅有高於大型蝶類之趨勢,因此推測小型蝶類可能透過動態差異提升翼面負重達到更好之飛行表現,因此本文進一步探討提升拍撲頻率和身體俯仰振幅動態對小型蝶類空氣作用力與功率產生之影響。透過數值模擬之方式,分析提升頻率與身體俯仰動態對於蝴蝶飛行之影響,研究結果發現兩者皆能有效提升蝴蝶翼面負重使達成穩定飛行,而前者對於蝴蝶能達到較高之飛行速度,但需要較多之空氣動力功率;而後者所能達到之飛行速度較低,但相對較節能,透過此兩動態之調配可進行飛行速度與飛行功率之調整。
本研究提供蝴蝶尺寸與翼面負重、功率與飛行速度等之關係,其可做為未來仿蝴蝶飛行器在尺寸、重量與馬達設計及材料選擇上重要之參考準則;此外,透過實驗與數值模擬結果之差異,本文提出運用飛行動態達到微飛行器飛行速度與功率之調控策略。
zh_TW
dc.description.abstractThe scale of butterflies largely variate among species, and might affect their flight performance intrinsically. In this work, we carry out experimental observations and numerical analysis to investigate how flight performances and flight motions of butterflies correlate with their sizes, and a flight strategy to enhance wing loading of small size butterflies is proposed accordingly.
Four different species of Taiwan butterflies with significant differences on wingspan (variating from 44-136 mm) were selected to study experimentally. The motions of butterflies were recorded with high-speed cameras when they were freely flying in an experimental chamber. The images of flight that close to forward flight were selected and analyze with the image processing software (Image J). The experimental results indicate that the wing loading of butterflies positively correlate to their wingspan, and the irregularity of the flight trajectory is not as evident as the previous research (Dudley, 1990). In addition, the flapping frequency and body angle amplitude of the small butterflies are found to be higher than that of large butterflies in our experiments.
Numerical models of butterflies in different scales are further created to analyze the size effect quantitatively since various parameters in experiments are combined and are unable to control separately. The butterfly in the simulation translate freely along the vertical and horizontal directions; the flight speeds determined by calculating the aerodynamic force and gravity force. The shape and flight motions of butterflies are considered as the same in each cases, and the mass is manually controlled to find the maximum wing loading of butterflies in specific size. The simulations results show that the wing loading decreases with the wingspan sharply while the shapes and the flight motions are considered as the same. The decreasing rate is more rapid than the trend recorded from experiments, which implies that small butterflies may adjust their flight motions, flapping frequency and body angle amplitude in our observation, to enhance their wing loading in nature. To clarify the effects of these two motions, we further adjust the flapping frequency and rotation amplitude in the simulation model. The results show that both ways effectively improve the wing loading of the butterflies as excepted; moreover, the butterflies are able to achieve higher forward speed with the former motion and are more energy-efficient with the latter motion. Butterflies may alter the flapping frequency or rotation amplitude.
Our results provide relations between the size of butterflies and the flight parameters. In an engineering perspective, these relations are especially important for the designing of flight vehicles; for example, determining the total weight of vehicles and power required of the motor. In addition, by comparing the difference between the experimental and simulation results, we proposed a motion control strategy to adjust the flight speed and power consumption of micro aircraft vehicles.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:28:24Z (GMT). No. of bitstreams: 1
ntu-106-R04522116-1.pdf: 4789365 bytes, checksum: 84290580bdd3c81c9323f6b70da3678a (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents目錄
符號說明 vi
目錄 viii
圖表目錄 x
第一章 前言 1
第二章 文獻回顧 3
2.1 微型飛行器之發展 3
2.2 飛行之背景知識 4
2.2-1 名詞介紹 4
2.2-2 升力和阻力 5
2.2-3 壓力中心、空氣動力中心和失速 6
2.2-4 渦度與環流量 6
2.2-5 Kutta-Joukowski定理 7
2.2-6 華格納效應 (Wagner effect) 7
2.3 昆蟲飛行之物理機制 9
2.3-1 名詞介紹 9
2.3-2 翼前緣渦漩貼附(leading edge vortex attachment) 11
2.3-3 翼尖渦漩 (wing tip vortex) 13
2.3-4 夾翼與拋翼 (clap and fling) 15
2.3-5 尾流捕捉效應(wake capture) 15
2.3-6 翅膀旋轉(wing rotation) 16
2.3-7 翅膀撓性 (wing flexibility) 17
2.4 蝴蝶相關研究 19
2.4-1 蝴蝶之構造 19
2.4-2 蝴蝶身體動態之研究 20
2.4-3 生物尺寸大小與飛行關係之相關研究 22
2.4-4 預期貢獻 24
第三章 研究方法 25
3.1 研究對象 26
3.2 因次分析 28
3.3 實驗分析 30
3.3-1 實驗設備架設 30
3.3-2 動作分析 31
3.3-3 數據分析 32
3.4 數值模擬 35
3.4-1 統御方程式 35
3.4-2 軟體介紹 35
3.4-3 網格介紹 35
3.3-4 動態網格 36
3.3-5 物理建模 37
3.3-6 動作參數和數值運算 39
第四章 結果與討論 41
4.1 實驗觀察 42
4.1-1生物特徵記錄 42
4-4.2飛行表現與尺寸趨勢與回歸 48
4.2 數值模擬 55
4.2-1 尺寸定量分析 55
4.2-2 自由飛行模擬動態分析 57
4.2-3 飛行動態分析 60
第五章 結論與未來展望 64
5.1 結論 64
5.2 未來展望 65
第六章 附錄 66
第七章 參考文獻 72
dc.language.isozh-TW
dc.title蝴蝶翼展尺寸效應及飛行動態策略zh_TW
dc.titleScale Effect of Wing Span and Flight Kinematic Strategies in Free-Flying Butterfliesen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee趙怡欽,楊馥菱,紀凱容,尤懷德
dc.subject.keyword蝴蝶尺寸差異,數值分析,動作分析,翼面負重,空氣作用力,zh_TW
dc.subject.keywordsize effect,numerical analysis,motion analysis,wing loading,aerodynamics force,en
dc.relation.page74
dc.identifier.doi10.6342/NTU201702550
dc.rights.note有償授權
dc.date.accepted2017-08-07
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  目前未授權公開取用
4.68 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved