請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67313完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭士康 | |
| dc.contributor.author | Yu-Kai Pan | en |
| dc.contributor.author | 潘郁凱 | zh_TW |
| dc.date.accessioned | 2021-06-17T01:27:30Z | - |
| dc.date.available | 2022-08-10 | |
| dc.date.copyright | 2017-08-10 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-07 | |
| dc.identifier.citation | [1] Argentieri, S., Danes, P., & Souères, P. (2015). A survey on sound source localization in robotics: From binaural to array processing methods. Computer Speech & Language, 34(1), 87-112.
[2] Asono, F., Asoh, H., & Matsui, T. (1999). Sound source localization and signal separation for office robot' JiJo-2'. In Multisensor Fusion and Integration for Intelligent Systems, 1999. MFI'99. Proceedings. 1999 IEEE/SICE/RSJ International Conference on (pp. 243-248). IEEE. [3] Luo, R. C., Huang, C. H., & Huang, C. Y. (2010). Search and track power charge docking station based on sound source for autonomous mobile robot applications. In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on (pp. 1347-1352). IEEE. [4] Valin, J. M., Michaud, F., Hadjou, B., & Rouat, J. (2004). Localization of simultaneous moving sound sources for mobile robot using a frequency-domain steered beamformer approach. In Robotics and Automation, 2004. Proceedings. ICRA'04. 2004 IEEE International Conference on (Vol. 1, pp. 1033-1038). IEEE. [5] Valin, J. M., Michaud, F., Rouat, J., & Létourneau, D. (2003). Robust sound source localization using a microphone array on a mobile robot. In Intelligent Robots and Systems, 2003.(IROS 2003). Proceedings. 2003 IEEE/RSJ International Conference on (Vol. 2, pp. 1228-1233). IEEE. [6] Potisk, T. (2015). Head-Related Transfer Function. In Seminar Ia, Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia. [7] Rothbucher, M., Kronmüller, D., Durkovic, M., Habigt, T., & Diepold, K. (2011). HRTF sound localization. In Advances in Sound Localization. InTech. [8] Nakadai, K., Okuno, H. G., & Kitano, H. (2001). Epipolar geometry based sound localization and extraction for humanoid audition. In Intelligent Robots and Systems, 2001. Proceedings. 2001 IEEE/RSJ International Conference on (Vol. 3, pp. 1395-1401). IEEE. [9] Chittka, L., & Brockmann, A. (2005). Perception space—the final frontier. PLoS biology, 3(4), e137. [10] Meddis, R., & Lopez-Poveda, E. A. (2010). Auditory periphery: from pinna to auditory nerve. In Computational models of the auditory system (pp. 7-38). Springer US. [11] Lee, C. C., Kishan, A. U., & Winer, J. A. (2011). Wiring of divergent networks in the central auditory system. Frontiers in neuroanatomy, 5. [12] Patel, A. D., & Iversen, J. R. (2007). The linguistic benefits of musical abilities. Trends in cognitive sciences, 11(9), 369-372. [13] Rayleigh, L. (1907). XII. On our perception of sound direction. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 13(74), 214-232. [14] Jennings, T. R., & Colburn, H. S. (2010). Models of the superior olivary complex. In Computational Models of the Auditory System (pp. 65-96). Springer US. [15] Jeffress, L. A. (1948). A place theory of sound localization. Journal of comparative and physiological psychology, 41(1), 35. [16] Liu, J., Erwin, H., & Wermter, S. (2008). Mobile robot broadband sound localisation using a biologically inspired spiking neural network. In Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on (pp. 2191-2196). IEEE. [17] Reed, M. C., & Blum, J. J. (1990). A model for the computation and encoding of azimuthal information by the lateral superior olive. The Journal of the Acoustical Society of America, 88(3), 1442-1453. [18] Davis, K. A., Hancock, K. E., & Delgutte, B. (2010). Computational models of inferior colliculus neurons. In Computational models of the auditory system (pp. 129-176). Springer US. [19] Leman, M., Lesaffre, M., &Tanghe, K. (2014). Toolbox for perception-based music analysis Concepts, demos, and reference manual. [20] Eliasmith, C. (2013). How to build a brain: A neural architecture for biological cognition. Oxford University Press. [21] Bekolay, T., Bergstra, J., Hunsberger, E., DeWolf, T., Stewart, T. C., Rasmussen, D., Choo, X., Voelker, S. R., & Eliasmith, C. (2013). Nengo: a Python tool for building large-scale functional brain models. Frontiers in neuroinformatics, 7. [22] Sharma, S., Aubin, S., & Eliasmith, C. (2016). Large-scale cognitive model design using the Nengo neural simulator. Biologically Inspired Cognitive Architectures, 17, 86-100. [23] Bekolay, T. (2016). Biologically inspired methods in speech recognition and synthesis: closing the loop. [24] Potisk, T. (2015). Head-Related Transfer Function. In Seminar Ia, Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia. [25] Leman, M., Lesaffre, M., & Tanghe, K. (2001). Introduction to the IPEM toolbox for perception-based music analysis. Mikropolyphonie-The Online Contemporary Music Journal, 7. [26] Zahn, T. P. (2003). Neural architecture for echo suppression during sound source localization based on spiking neural cell models | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67313 | - |
| dc.description.abstract | 本論文採用雙耳麥克風技術處理聲源定位,以頭部相關轉移函數HRTFs產生在無反射環境下,左右雙耳的聲音訊號,再運用MATLAB程式庫IPEM Toolbox中的Auditory Peripheral Module模組,模擬耳蝸的功能,將輸入聲音轉為40個頻道的神經訊號分頻排列,最後以神經系統模擬工具Nengo,實作人類聽覺神經系統中的主要模組:內側上橄欖(MSO)與外側上橄欖(LSO)模型分別計算兩耳訊號時間差(ITD)及強度差(ILD),下丘(IC)模型整合MSO及LSO輸出,得到聲源方位角的估計,完成一個仿生聽覺聲源定位系統。數值實驗發現,此一系統在無反射環境下,平均準確度可以達到82 %。在足夠延遲的回聲環境下,本系統方位辨識的準確度下降。未來可以在我們的系統添加一些下丘處理回聲的機制,相信可以使我們的系統更適應較真實的聽覺環境。 | zh_TW |
| dc.description.abstract | In this thesis, we use the binaural-microphone technique to process the sound source localization, and apply the Head-related Transfer Functions (HRTFs) to generate sound signals for the left and right ears in an anechoic environment. The auditory sound source localization system is bio-inspired structures and mechanisms such as the tonotopic organization and the biological nervous system operating principle. The Auditory Peripheral Module in the IPEM Toolbox of the MATLAB library is then applied to simulate the cochlear and convert the sound signal into the neural pulse rate. After the cochlear model, Nengo, a software for simulating neural systems, is applied to simulate Medial Superior Olive (MSO) and Lateral Superior Olive (LSO) for computing ITD and ILD, respectively. The Inferior Colliculus (IC) is finally added to estimate the location of the sound source by integrating the outputs of MSO and LSO. Results of numerical experiments show 82 % accuracy under anechoic environment, but the system becomes not so accurate if echoes with sufficient delay are also received. Nevertheless, we believe that our system can achieve better accuracy, if the echo-processing in IC can be simulated, too. With such revisions, we believe that our system can be more adapted to realistic auditory environments. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T01:27:30Z (GMT). No. of bitstreams: 1 ntu-106-R04942117-1.pdf: 2810184 bytes, checksum: 7917a6dfdd565b97fdd8607e323d63af (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 目錄
口試委員會審定書 i 誌謝 ii 中文摘要 iii ABSTRACT iv 目錄 v 表目錄 vii 圖目錄 viii 第 1 章 緒論 1 1.1 研究動機及目的 1 1.2 文獻回顧 2 1.3 本論文貢獻 3 1.4 章節概要 3 第 2 章 生物基礎和假設 4 2.1 人類聽覺周邊系統 4 2.2 人類聽覺中樞系統 6 2.2.1 內側上橄欖(MSO) 9 2.2.2 外側上橄欖(LSO) 10 2.2.3 下丘(IC) 11 第 3 章 主要聽覺計算軟體 12 3.1 脈衝神經網路模擬軟體 Brian 12 3.2 基於感知分析的周邊聽覺模組 MATLAB程式庫IPEM Toolbox 12 3.3 神經系統模擬軟體 Nengo 14 第 4 章 聽覺系統的計算機模型 18 4.1 無反射環境頭部相關轉移函數(HRTF) 18 4.2 周邊聽覺模組IPEM Auditory Peripheral Module 21 4.3 Nengo MSO模型 23 4.4 Nengo LSO模型 27 4.5 Nengo IC模型 31 第 5 章 數值結果與討論 35 5.1 頭部相關轉移函數HRTF-產生虛擬環境音效 35 5.2 周邊聽覺模組APM-模擬耳蝸行為並轉為神經訊號 37 5.3 聽覺中樞系統模型數值模擬與無反射聲源定位結果 38 5.4 反射環境中的聲源定位結果 46 第 6 章 結論 50 參考文獻 51 | |
| dc.language.iso | zh-TW | |
| dc.subject | 聲源定位 | zh_TW |
| dc.subject | 雙耳麥克風 | zh_TW |
| dc.subject | 仿生 | zh_TW |
| dc.subject | 神經系統 | zh_TW |
| dc.subject | Nervous system | en |
| dc.subject | Sound source localization | en |
| dc.subject | Bio-inspired structures | en |
| dc.subject | Binaural-microphone | en |
| dc.title | 仿人類雙耳聽覺的單一聲源定位 | zh_TW |
| dc.title | Humanoid Binaural Auditory Localization of Single Sound Source | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 劉奕汶,張智星 | |
| dc.subject.keyword | 雙耳麥克風,聲源定位,仿生,神經系統, | zh_TW |
| dc.subject.keyword | Binaural-microphone,Sound source localization,Bio-inspired structures,Nervous system, | en |
| dc.relation.page | 53 | |
| dc.identifier.doi | 10.6342/NTU201702528 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-08-07 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 2.74 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
