請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67309完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 高英哲 | |
| dc.contributor.author | Chun-Chu Cheng | en |
| dc.contributor.author | 鄭君筑 | zh_TW |
| dc.date.accessioned | 2021-06-17T01:27:22Z | - |
| dc.date.available | 2018-08-11 | |
| dc.date.copyright | 2017-08-11 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-07 | |
| dc.identifier.citation | [1] J Vannimenus and G Toulouse. Theory of the frustration effect. ii. ising spins on a square lattice. Journal of Physics C: Solid State Physics, 10(18):L537, 1977.
[2] H T Diep. Theory of the frustration effect. II. Ising spins on a square lattice. World Scientific, 2004. [3] W. F. Giauque and J. W. Stout. The entropy of water and the third law of thermodynamics. the heat capacity of ice from 15 to 273°k. Journal of the American Chemical Society, 58(7):1144–1150, 1936. [4] J. D. Bernal and R. H. Fowler. A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions. The Journal of Chemical Physics, (8):515–548, 1933. [5] Linus Pauling. The structure and entropy of ice and of other crystals with some randomness of atomic arrangement. Journal of the American Chemical Society, 57(12):2680–2684, 1935. [6] M. J. Harris, S. T. Bramwell, D. F. McMorrow, T. Zeiske, and K. W. Godfrey. Geometrical frustration in the ferromagnetic pyrochlore ho2ti2o7. Phys. Rev. Lett., 79:2554–2557, 1997. [7] A. P. Ramirez, A. Hayashi, R. J. Cava, R. Siddharthan, and B. S. Shastry. Zero-point entropy in /‘spin ice/’. Nature, 399:333–335, 1999. [8] A. L. Cornelius and J. S. Gardner. Short-range magnetic interactions in the spin-ice compound ho2ti2o7. Phys. Rev. B, 64:060406, 2001. [9] Byron C. den Hertog and Michel J. P. Gingras. Dipolar interactions and origin of spin ice in ising pyrochlore magnets. Phys. Rev. Lett., 84:3430–3433, 2000. [10] S. T. Bramwell, M. J. Harris, B. C. den Hertog, M. J. P. Gingras, J. S. Gardner, D. F. McMorrow, A. R. Wildes, A. L. Cornelius, J. D. M. Champion, R. G. Melko, and T. Fennell. Spin correlations in ho2ti2o7: A dipolar spin ice system. Phys. Rev. Lett., 87:047205, 2001. [11] Roger G. Melko, Byron C. den Hertog, and Michel J. P. Gingras. Long-range order at low temperatures in dipolar spin ice. Phys. Rev. Lett., 87:067203, 2001. [12] Roger G Melko and Michel J P Gingras. Monte carlo studies of the dipolar spin ice model. Journal of Physics: Condensed Matter, 16(43):R1277, 2004. [13] L. D. C. Jaubert, J. T. Chalker, P. C. W. Holdsworth, and R. Moessner. Threedimensional kasteleyn transition: Spin ice in a [100] field. Phys. Rev. Lett., 100:067207, 2008. [14] P. W. Kasteleyn. Dimer statistics and phase transitions. Journal of Mathematical Physics, 4(2):287–293, 1963. [15] Sheng-Ching Lin and Ying-Jer Kao. Half-magnetization plateau of a dipolar spin ice in a [100] field. Phys. Rev. B, 88:220402, 2013. [16] Shun ichi Yoshida, Koji Nemoto, and Koh Wada. Ordered phase of dipolar spin ice under [110] magnetic field. Journal of the Physical Society of Japan, 73(7):1619–1622, 2004. [17] K Matsuhira, Z Hiroi, T Tayama, S Takagi, and T Sakakibara. A new macroscopically degenerate ground state in the spin ice compound dy 2 ti 2 o 7 under a magnetic field. Journal of Physics: Condensed Matter, 14(29):L559, 2002. [18] T. Sakakibara, T. Tayama, Z. Hiroi, K. Matsuhira, and S. Takagi. Observation of a liquid-gas-type transition in the pyrochlore spin ice compound dy2ti2o7 in a magnetic field. Phys. Rev. Lett., 90:207205, 2003. [19] L D C Jaubert and P C W Holdsworth. Magnetic monopole dynamics in spin ice. Journal of Physics: Condensed Matter, 23(16):164222, 2011. [20] C. Castelnovo, R. Moessner, and S. L. Sondhi. Magnetic monopoles in spin ice. Nature, 451:42–45, 2008. [21] J. Snyder, J. S. Slusky, R. J. Cava, and P. Schiffer. How /‘spin ice/’ freezes. Nature,413:48–51, 2001. [22] G Ehlers, A L Cornelius, M Orendác, M Kajnaková, T Fennell, S T Bramwell, and J S Gardner. Dynamical crossover in ’hot’ spin ice. Journal of Physics: Condensed Matter, 15(2):L9, 2003. [23] J. Snyder, B. G. Ueland, J. S. Slusky, H. Karunadasa, R. J. Cava, and P. Schiffer. Low-temperature spin freezing in the dy2ti2o7 spin ice. Phys. Rev. B, 69:064414, 2004. [24] G Ehlers, A L Cornelius, T Fennell, M Koza, S T Bramwell, and J S Gardner. Evidence for two distinct spin relaxation mechanisms in ’hot’ spin ice ho 2 ti 2 o 7. Journal of Physics: Condensed Matter, 16(11):S635, 2004. [25] K Matsuhira, Y Hinatsu, K Tenya, and T Sakakibara. Low temperature magnetic properties of frustrated pyrochlore ferromagnets ho 2 sn 2 o 7 and ho 2 ti 2 o 7. Journal of Physics: Condensed Matter, 12(40):L649, 2000. [26] Hiroshi Takatsu, Kazuki Goto, Hiromi Otsuka, Ryuji Higashinaka, Kazuyuki Matsubayashi, Yoshiya Uwatoko, and Hiroaki Kadowaki. Ac susceptibility of the dipolar spin ice dy2ti2o7: Experiments and monte carlo simulations. Journal of the Physical Society of Japan, 82(10):104710, 2013. [27] T. Fennell, S. T. Bramwell, D. F. McMorrow, P. Manuel, and A. R. Wildes. Pinch points and kasteleyn transitions in kagome ice. Nat Phys, 3:566–572, 2007. [28] Wen-Han Kao, Peter C. W. Holdsworth, and Ying-Jer Kao. Field-induced ordering in dipolar spin ice. Phys. Rev. B, 93:180410, 2016. [29] Jacob P. C. Ruff, Roger G. Melko, and Michel J. P. Gingras. Finite-temperature transitions in dipolar spin ice in a large magnetic field. Phys. Rev. Lett., 95:097202, 2005. [30] Bernd A. Berg. Markov chain Monte Carlo simulations and their statistical analysis: with web-based Fortran code. World Scientific, 2004. [31] H. G. Katzgraber. Introduction to Monte Carlo Methods. ArXiv e-prints, 2009. [32] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and Edward Teller. Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 21(6):1087–1092, 1953. [33] Koji Hukushima and Koji Nemoto. Exchange monte carlo method and application to spin glass simulations. Journal of the Physical Society of Japan, 65(6):1604–1608, 1996. [34] P. P. Ewald. Die Berechnung optischer und elektrostatischer Gitterpotentiale. Annalen der Physik, 369:253–287, 1921. [35] Ludovic D.C. Jaubert. Topological Constraints and Defects in Spin Ice. Theses, Ecole normale supérieure de lyon - ENS LYON, 2009. [36] Y. Tabata, H. Kadowaki, K. Matsuhira, Z. Hiroi, N. Aso, E. Ressouche, and B. Fåk. Kagomé ice state in the dipolar spin ice dy2ti2o7. Phys. Rev. Lett., 97:257205, 2006. [37] Vanchna Singh, Varsha Banerjee, and Manish Sharma. Dynamics of magnetic nanoparticle suspensions. Journal of Physics D: Applied Physics, 42(24):245006, 2009. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67309 | - |
| dc.description.abstract | 本論文以數值方法研究古典自旋冰材料二鈦酸鏑(Dysprosium Titanate)在偏離[111]磁場下的行為。古典自旋冰材料,如二鈦酸鏑和二鈦酸鈥(Holmium Titanate),是一種幾何不穩定的材料,其中具磁性之稀土離子排列成共角四面體之結構。其晶場分裂造成之各異向性(aniostropy)導致四個頂點的自旋可以指向四面體或是遠離四面體,產生類似冰的 「兩進兩出」原則和餘熵(residual entropy)。其中餘熵的量可以透過外加磁場來控制。
在先前的數值研究中,研究者發現偶極自旋冰模型在稍微偏離[111]磁場下出現一特殊的基態自旋結構:q=X態,並指出此結構的穩定性來自於長程偶極作用。由於有研究指出,在材料二鈦酸鏑中有第二和第三鄰近自旋交互作用,本篇論文將偶極自旋冰模型擴展至包含第二和第三鄰近自旋交互作用,以古典蒙地卡羅方法研究此模型在偏離[111]磁場下之行為及第二和第三鄰近自旋交互作用的影響。另外,我們藉由量測交流磁化率來了解在此特殊磁場下自旋冰的動力學。 第一章將介紹自旋冰系統及過去研究的脈絡,包含自旋冰的動力學和其在外加磁場下之行為。 第二章將介紹本論文所使用之數值方法。我們以單自旋更新演算法(single-spin-flip algorithm)為基本架構,並使用平行回火(parallel tempering)幫助低溫系統達到平衡。另外,我們用Ewald求和法(Ewald Summation)來處理長程偶極作用。 研究結果將在第三章呈現。在對應到古典自旋冰材料二鈦酸鏑之參數下,q=X態仍存在於偏離[111]磁場下。其中額外的第三鄰近自旋交互作用會使此結構更穩定,但第二鄰近自旋交互作用會使其更不穩定。我們發現當有第二鄰近自旋交互作用很大時,會破壞q=X態結構之穩定性,使系統進入另一種基態自旋結構:fully-polarized態。至於動力學方面,在偏離[111]磁場下Kagome平面上兩種方向之交流磁化率呈現不一致的結果,尤其當溫度接近相變溫度時。 | zh_TW |
| dc.description.abstract | In this thesis, we study the behavior of Dysprosium Titanate (Dy_2Ti_2O_7) ,one of the well established spin ice materials, in the tilted magnetic field numerically.
Spin ice has attracted much attention in frustrated systems because it is the magnetic analogue to the water ice system. The frustration leads to the degenerate ground states and the residual entropy which appears in both spin ice and water ice. The ground state degeneracy can be lifted by applying magnetic field. An ordered state, q=X state, was found previously when applying a magnetic field along [111] direction with slightly tilt toward [112] direction in a numerical study of dipolar spin ice model. In this thesis, we extended our model to generalized dipolar spin ice model by adding further-neighbor interactions. The extra second- and third-nearest neighbor exchange interactions also support the existence of q=X state but shift the boundary value of the magnetic field along [111] direction. Also, in certain parameter space of further-neighbor interactions, antiferromagnetic spin chain ordering of q=X state on Kagome plane is suppressed and fully polarized state appears instead. We also study the dynamics of spin ice in tilted [111] field near transition where ordering of spin chains on Kagome plane start to be broken by the thermal fluctuation. By numerically measuring the AC susceptibility, we find the dynamics along two perpendicular directions on Kagome plane are different. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T01:27:22Z (GMT). No. of bitstreams: 1 ntu-106-R04222001-1.pdf: 7403406 bytes, checksum: 5354cec8404924c22195ea09d8e40189 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 1 Introduction 1
1.1 Geometrical Frustration . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Spin Ice Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Dipolar Spin Ice Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 Magnetic Field Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4.1 Magnetic Field along [100] . . . . . . . . . . . . . . . . . . . . . 8 1.4.2 Magnetic Field along [110] . . . . . . . . . . . . . . . . . . . . . 10 1.4.3 Magnetic Field along [111] . . . . . . . . . . . . . . . . . . . . . 10 1.5 Magnetic Monopoles in Spin Ice . . . . . . . . . . . . . . . . . . . . . . 12 1.6 Dynamics of Spin Ice . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.7 Motivation of This Work . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2 Methods 17 2.1 Monte Carlo Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 Metropolis Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3 Parallel Tempering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.4 Ewald Summation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.5 Procedure of Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 25 xi3 Spin Ice in the Tilted [111] Field 27 3.1 Simple Dipolar Spin Ice Model . . . . . . . . . . . . . . . . . . . . . . . 27 3.2 Generalized Dipolar Spin Ice Model . . . . . . . . . . . . . . . . . . . . 31 3.2.1 Effect of third-neighbor interaction J3 . . . . . . . . . . . . . . . 34 3.2.2 Effect of second-neighbor interaction J2 . . . . . . . . . . . . . . 35 3.2.3 Disappearance of q = X state . . . . . . . . . . . . . . . . . . . 38 3.3 AC Magnetic Susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.3.1 AC Magnetic Field along [1¯ 10] . . . . . . . . . . . . . . . . . . . 40 3.3.2 AC Magnetic Field along [¯ 1¯ 12] . . . . . . . . . . . . . . . . . . . 42 4 Summary 45 Bibliography 47 | |
| dc.language.iso | en | |
| dc.subject | 交流磁化率 | zh_TW |
| dc.subject | 自旋冰 | zh_TW |
| dc.subject | 蒙地卡羅法 | zh_TW |
| dc.subject | 平行回火 | zh_TW |
| dc.subject | 偶極自旋冰 | zh_TW |
| dc.subject | 二鈦酸鏑 | zh_TW |
| dc.subject | dyprosium titanate | en |
| dc.subject | dipolar spin ice | en |
| dc.subject | Monte Carlo simulation | en |
| dc.subject | q=X state | en |
| dc.subject | ac susceptibility | en |
| dc.subject | spin ice | en |
| dc.title | 偏離 [111] 磁場中偶極自旋冰的相圖和動力學 | zh_TW |
| dc.title | Phase Diagram and Dynamics of Dipolar Spin Ice in Tilted [111] Field | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 郭光宇,陳柏中 | |
| dc.subject.keyword | 自旋冰,偶極自旋冰,蒙地卡羅法,交流磁化率,二鈦酸鏑,平行回火, | zh_TW |
| dc.subject.keyword | spin ice,dipolar spin ice,Monte Carlo simulation,q=X state,ac susceptibility,dyprosium titanate, | en |
| dc.relation.page | 50 | |
| dc.identifier.doi | 10.6342/NTU201702174 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-08-07 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理學研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 7.23 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
