Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67294
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王尚禮(Shan-Li Wang)
dc.contributor.authorHsin-Fang Changen
dc.contributor.author張馨方zh_TW
dc.date.accessioned2021-06-17T01:26:52Z-
dc.date.available2021-08-01
dc.date.copyright2020-09-17
dc.date.issued2020
dc.date.submitted2020-08-18
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67294-
dc.description.abstract銦之化合物被廣泛的使用在半導體、光電和能源等高科技產品當中,隨著使用量的增加,也增加了曝露於環境中的風險,若此污染物流布於土壤當中,則可能累積於植物體內,進入食物鏈進一步影響人體的健康。因此為評估其污染風險,有必要瞭解銦進入土壤後的生物有效性,以及食用作物對其吸收和累積。銦在土壤中主要是鐵猛氧化物結合態的形式存在,其次是氫氧化銦和磷酸銦的沈澱。銦化合物的溶解度決定了土壤中銦的有效性,在pH低時,銦的有效性較高。植物吸收的銦大部分會積累在根部,只有一小部分被運送至穀粒。銦的積累會限制植物的生長、引起氧化逆境、花青累積與植體內營養的失衡。植物根系分泌物中的檸檬酸可以作為一個潛在銦的螯合劑,降低銦的吸收。食用受銦污染的糧食作物可能是人類暴露銦污染的接觸途徑之一。為了評估食用銦污染米麥對人體健康風險造成危害程度,引用美國環保署環境風險評估公式運算銦之危害商數值。水稻和小麥分別種植在不同pH的土壤中,其中高銦濃度(1.0 mmol kg-1)的酸性土壤,被認為是現實中最壞的污染情況,因為銦在酸性條件下有最大的生物有效性。結果顯示即使在此條件下,從受銦污染的土壤中收獲的米麥,銦的最大危害商數值皆小於1,即表示不會對人類健康產生不利影響,依此,可推測銦於食用米麥的食物鏈途徑對人體的危害風險應該不高。然而,實地銦污染如何藉由食物鏈影響人體的健康仍須進一步研究,以更好地闡明種植在受銦污染土壤中的作物所帶來的環境風險。zh_TW
dc.description.abstractThe use of indium in semiconductor products has increased markedly in recent years. The release of indium into the ecosystem is inevitable. Under such circumstances, effective and accurate assessment of indium risk is important. However, knowledge of its environmental fate has been very limited so far. This study aims to investigate indium accumulation and its toxic effects on plants, as plants constitute the base of food chains. In soil, the predominant indium species are indium associated with iron hydroxides followed by indium hydroxide and phosphate precipitates. Their solubilities determine overall indium availability in soil, which is higher at lower pHs. Most absorbed indium accumulates at the roots, with only a tiny portion reaching the grains. Indium accumulation in plants caused stunted growth, oxidative stress, anthocyanization, and unbalanced mineral nutrition. Secreted citrate could function as a potential detoxifier to repel indium uptake. Consumption of indium-contaminated food crops is potentially a major human exposure pathway. Indium accumulation in the human body is probably carcinogenic and has various adverse effects on human health, such as heart, kidney, and liver damages. To evaluate potential risks associated with indium-contaminated consumption, rice and wheat were grown on soils with different pHs and textures, including acidic soil with a high indium concentration (1.0 mmol kg-1), which is considered the worst-case scenario because it promotes the greatest indium bioavailability. The health risks to humans, based on their grain consumption, were evaluated using the Hazard Quotient (HQ). The corresponding HQ indicated no adverse effects on human health, even in the worst-case scenario. Therefore, the consumption of rice and wheat grains harvested from indium-contaminated soils probably does not warrant concern for human health. Further field studies are necessary to better elucidate the risks associated with consuming crops grown in indium contaminated soils.en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:26:52Z (GMT). No. of bitstreams: 1
U0001-1608202013240200.pdf: 7401538 bytes, checksum: 8633ced50e8f8c0d3bcc6efe17b66a0a (MD5)
Previous issue date: 2020
en
dc.description.tableofcontentsAbstract i
Table of contents iii
List of tables vi
List of figures vii
Chapter 1. General Introduction 1
Chapter 2. Literature review 5
2.1 The chronicle of indium 6
2.1.1 Physical and chemical properties of indium and its application 6
2.2 Environmental aspects 7
2.2.1 Indium as an environmental contaminant 7
2.2.2 Transport and distribution of indium in air, water and soil 8
2.2.3 Environmental standards for indium 11
2.3 Indium and its toxic effects 13
2.3.1 Exposure data in experimental animals 13
2.3.2 Carcinogenicity, Mutagenicity, and Teratogenicity 14
2.3.3 Health risks of indium in humans 14
2.3.4 Effects of indium on plant growth 15
Chapter 3. Indium accumulation, toxicity, and tolerance in the modal plant Arabidopsis thaliana 16
3.1 Introduction 17
3.2 Material and methods 18
3.2.1 Indium Treatments and Plant Growth 18
3.2.2 Elemental Analysis 18
3.2.3 Lipid Peroxidation Estimation 18
3.2.4 Anthocyanin Profiling Analysis 19
3.2.5 RNA Isolation and Quantitative Real-time PCR 19
3.2.6 Protein extraction and immunoblot analysis 20
3.2.7 NanoSIMS Analysis 21
3.2.8 LA-ICP-MS Analysis 22
3.2.9 Indium K-edge XAS Analysis 22
3.2.10 Root Exudates Analysis 24
3.2.11 Statistical analysis 24
3.3 Results and discussion 25
3.3.1 Indium accumulation and its effect on the growth of Arabidopsis 25
3.3.2 Oxidative stress and antioxidative system in indium-treated Arabidopsis 27
3.3.3 Effect of indium on mineral content in Arabidopsis 32
3.3.4 Genes of phosphate starvation response are induced by indium exposure 37
3.3.5 Indium treatment reduces protein levels of transporters in Pi uptake and root-to-shoot translocation 39
3.3.6 Indium-stimulated PHO1 degradation is via PHO2 43
3.3.7 Impaired phosphorus homeostasis is a key determinant of indium toxicity 45
3.3.8 Spatial distribution and speciation of indium in Arabidopsis 49
3.3.9 Indium induces secretion of root organic acids 56
3.4 Environmental Implications 59
Chapter 4. Indium uptake and accumulation by rice and wheat, its effects on plants nutrients, and associated health risk via crop’s grains consumption 61
4.1 Introduction 62
4.2 Material and methods 64
4.2.1 Soil preparation 64
4.2.2 Pot experiments 65
4.2.3 Elemental Analysis 66
4.2.4 Determination of the bioaccumulation factor 67
4.2.5 Indium K-edge XAS analysis 67
4.2.6 Sequential extraction 68
4.2.7 Micro-XRF and indium K-edge Micro-XANES analysis 69
4.2.8 Laser ablation ICP-MS (LA-ICP-MS) analysis 69
4.2.9 Human risk assessment of indium through rice or wheat consumption 70
4.2.10 Statistical analysis 71
4.3 Results and discussion 72
4.3.1 Indium uptake of rice and wheat plants as a function of soil indium content 72
4.3.2 Indium accumulation in different parts of rice and wheat plants 76
4.3.2.1 Indium availability in soils 76
4.3.2.2 Distribution and speciation of indium in the soils using μ-XRF and μ-XANES 83
4.3.2.3 Bioaccumulation factors of indium in rice and wheat 88
4.3.3 Risks of rice and wheat grain consumption to human health 91
4.3.4 Effects of indium on plants nutrients 93
4.4 Environmental Implications 94
Chapter 5. Concluding remarks and future perspectives 96
5.1 Introduction 97
5.2 Bioavailability of indium in soil 98
5.3 Indium uptake, transport and distribution in plants 103
5.4 General effects of indium on plants 106
5.4.1 Indium-induced oxidative stress 106
5.4.2 Antioxidant responses in plants to indium-induced oxidative stress 107
5.4.3 Nutrient uptake under indium stress 107
5.4.5 Mechanism of indium tolerance in plants: the possible role of organic acids 109
5.4.6 Aluminum, gallium and indium toxicity in plants 111
5.5 Indium accumulation in staple crops, a major exposure pathway for indium pollution in environment, does not pose a health risk 113
5.6 Conclusions 115
References 116
Appendix I. Supporting information 129
Appendix II. Statement of Contribution 131
dc.language.isoen
dc.subject植物營養zh_TW
dc.subject逆境反應zh_TW
dc.subject小麥zh_TW
dc.subject健康風險zh_TW
dc.subject水稻zh_TW
dc.subject阿拉伯芥zh_TW
dc.subject銦zh_TW
dc.subjectRiceen
dc.subjectArabidopsis thalianaen
dc.subjectHealth risken
dc.subjectNutrient uptakeen
dc.subjectStress responseen
dc.subjectWheaten
dc.subjectIndiumen
dc.title銦對植物的毒性及土壤銦對食用米麥的環境風險zh_TW
dc.titleIndium toxicity to plants and environmental risk of indium contaminated soils for growing rice and wheaten
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree博士
dc.contributor.advisor-orcid王尚禮(0000-0003-3156-5365)
dc.contributor.coadvisor葉國楨(Kuo-Chen Yeh)
dc.contributor.coadvisor-orcid葉國楨(0000-0002-3791-3423)
dc.contributor.oralexamcommittee李達源(Dar-Yuan Lee),莊愷瑋(Kai-Wei Juang),鄒裕民(Yu-Min Tzou),劉雨庭(Yu-Ting Liu),賴鴻裕(Hung-Yu Lai)
dc.contributor.oralexamcommittee-orcid李達源(0000-0002-6915-6543),鄒裕民(0000-0002-3680-7303),劉雨庭(0000-0002-5939-0010),賴鴻裕(0000-0002-9866-0706)
dc.subject.keyword銦,阿拉伯芥,水稻,小麥,逆境反應,植物營養,健康風險,zh_TW
dc.subject.keywordIndium,Arabidopsis thaliana,Rice,Wheat,Stress response,Nutrient uptake,Health risk,en
dc.relation.page131
dc.identifier.doi10.6342/NTU202003574
dc.rights.note有償授權
dc.date.accepted2020-08-19
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
U0001-1608202013240200.pdf
  未授權公開取用
7.23 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved