Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 微生物學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67289
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李財坤(Tsai-Kun Li)
dc.contributor.authorHsiao-Han Chiuen
dc.contributor.author邱筱涵zh_TW
dc.date.accessioned2021-06-17T01:26:41Z-
dc.date.available2027-12-31
dc.date.copyright2018-03-29
dc.date.issued2017
dc.date.submitted2017-08-07
dc.identifier.citationAguilera, A. and T. Garcia-Muse (2012). 'R loops: from transcription byproducts to threats to genome stability.' Mol Cell 46(2): 115-124.
Baaklini, I., C. Hraiky, F. Rallu, Y. C. Tse-Dinh and M. Drolet (2004). 'RNase HI overproduction is required for efficient full-length RNA synthesis in the absence of topoisomerase I in Escherichia coli.' Mol Microbiol 54(1): 198-211.
Baaklini, I., V. Usongo, F. Nolent, P. Sanscartier, C. Hraiky, K. Drlica and M. Drolet (2008). 'Hypernegative supercoiling inhibits growth by causing RNA degradation.' J Bacteriol 190(22): 7346-7356.
Belotserkovskii, B. P., A. J. Neil, S. S. Saleh, J. H. Shin, S. M. Mirkin and P. C. Hanawalt (2013). 'Transcription blockage by homopurine DNA sequences: role of sequence composition and single-strand breaks.' Nucleic Acids Res 41(3): 1817-1828.
Berger, J. M., S. J. Gamblin, S. C. Harrison and J. C. Wang (1996). 'Structure and mechanism of DNA topoisomerase II.' Nature 379(6562): 225-232.
Bhatia, V., S. I. Barroso, M. L. Garcia-Rubio, E. Tumini, E. Herrera-Moyano and A. Aguilera (2014). 'BRCA2 prevents R-loop accumulation and associates with TREX-2 mRNA export factor PCID2.' Nature 511(7509): 362-365.
Bolivar, F., R. L. Rodriguez, P. J. Greene, M. C. Betlach, H. L. Heyneker, H. W. Boyer, J. H. Crosa and S. Falkow (1977). 'Construction and Characterization of New Cloning Vehicles .2. Multipurpose Cloning System.' Gene 2(2): 95-113.
Cerritelli, S. M. and R. J. Crouch (2009). 'Ribonuclease H: the enzymes in eukaryotes.' FEBS J 276(6): 1494-1505.
Champoux, J. J. (2001). 'DNA topoisomerases: structure, function, and mechanism.' Annu Rev Biochem 70: 369-413.
Chaudhuri, J. and F. W. Alt (2004). 'Class-switch recombination: interplay of transcription, DNA deamination and DNA repair.' Nat Rev Immunol 4(7): 541-552.
Chon, H., J. L. Sparks, M. Rychlik, M. Nowotny, P. M. Burgers, R. J. Crouch and S. M. Cerritelli (2013). 'RNase H2 roles in genome integrity revealed by unlinking its activities.' Nucleic Acids Res 41(5): 3130-3143.
DiNardo, S., K. A. Voelkel, R. Sternglanz, A. E. Reynolds and A. Wright (1982). 'Escherichia coli DNA topoisomerase I mutants have compensatory mutations in DNA gyrase genes.' Cell 31(1): 43-51.
Drolet, M., X. Bi and L. F. Liu (1994). 'Hypernegative supercoiling of the DNA template during transcription elongation in vitro.' J Biol Chem 269(3): 2068-2074.
Drolet, M., P. Phoenix, R. Menzel, E. Masse, L. F. Liu and R. J. Crouch (1995). 'Overexpression of RNase H partially complements the growth defect of an Escherichia coli delta topA mutant: R-loop formation is a major problem in the absence of DNA topoisomerase I.' Proc Natl Acad Sci U S A 92(8): 3526-3530.
Garcia-Rubio, M. L., C. Perez-Calero, S. I. Barroso, E. Tumini, E. Herrera-Moyano, I. V. Rosado and A. Aguilera (2015). 'The Fanconi Anemia Pathway Protects Genome Integrity from R-loops.' PLoS Genet 11(11): e1005674.
Ginno, P. A., P. L. Lott, H. C. Christensen, I. Korf and F. Chedin (2012). 'R-loop formation is a distinctive characteristic of unmethylated human CpG island promoters.' Mol Cell 45(6): 814-825.
Groh, M. and N. Gromak (2014). 'Out of balance: R-loops in human disease.' PLoS Genet 10(9): e1004630.
Hall, K. B. and L. W. McLaughlin (1991). 'Thermodynamic and structural properties of pentamer DNA.DNA, RNA.RNA, and DNA.RNA duplexes of identical sequence.' Biochemistry 30(44): 10606-10613.
Hishida, T., Y. W. Han, T. Shibata, Y. Kubota, Y. Ishino, H. Iwasaki and H. Shinagawa (2004). 'Role of the Escherichia coli RecQ DNA helicase in SOS signaling and genome stabilization at stalled replication forks.' Genes Dev 18(15): 1886-1897.
Honjo, T., K. Kinoshita and M. Muramatsu (2002). 'Molecular mechanism of class switch recombination: linkage with somatic hypermutation.' Annu Rev Immunol 20: 165-196.
Kirkegaard, K. and J. C. Wang (1985). 'Bacterial DNA topoisomerase I can relax positively supercoiled DNA containing a single-stranded loop.' J Mol Biol 185(3): 625-637.
Li, X. and J. L. Manley (2006). 'Cotranscriptional processes and their influence on genome stability.' Genes Dev 20(14): 1838-1847.
Liu, L. F. and J. C. Wang (1987). 'Supercoiling of the DNA template during transcription.' Proc Natl Acad Sci U S A 84(20): 7024-7027.
Manis, J. P., M. Tian and F. W. Alt (2002). 'Mechanism and control of class-switch recombination.' Trends Immunol 23(1): 31-39.
Martel, M., A. Balleydier, A. Sauriol and M. Drolet (2015). 'Constitutive stable DNA replication in Escherichia coli cells lacking type 1A topoisomerase activity.' DNA Repair (Amst) 35: 37-47.
Masse, E. and M. Drolet (1999). 'R-loop-dependent hypernegative supercoiling in Escherichia coli topA mutants preferentially occurs at low temperatures and correlates with growth inhibition.' J Mol Biol 294(2): 321-332.
Pena, A., K. Gewartowski, S. Mroczek, J. Cuellar, A. Szykowska, A. Prokop, M. Czarnocki-Cieciura, J. Piwowarski, C. Tous, A. Aguilera, J. L. Carrascosa, J. M. Valpuesta and A. Dziembowski (2012). 'Architecture and nucleic acids recognition mechanism of the THO complex, an mRNP assembly factor.' EMBO J 31(6): 1605-1616.
Perez-Cheeks, B. A., C. Lee, R. Hayama and K. J. Marians (2012). 'A role for topoisomerase III in Escherichia coli chromosome segregation.' Mol Microbiol 86(4): 1007-1022.
Petersen-Mahrt, S. K., R. S. Harris and M. S. Neuberger (2002). 'AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification.' Nature 418(6893): 99-103.
Pham, P., R. Bransteitter, J. Petruska and M. F. Goodman (2003). 'Processive AID-catalysed cytosine deamination on single-stranded DNA simulates somatic hypermutation.' Nature 424(6944): 103-107.
Potenski, C. J. and H. L. Klein (2011). 'R we there yet? R-loop hazards to finishing the journey.' Mol Cell 44(6): 848-850.
Ratmeyer, L., R. Vinayak, Y. Y. Zhong, G. Zon and W. D. Wilson (1994). 'Sequence specific thermodynamic and structural properties for DNA.RNA duplexes.' Biochemistry 33(17): 5298-5304.
Roberts, R. W. and D. M. Crothers (1992). 'Stability and properties of double and triple helices: dramatic effects of RNA or DNA backbone composition.' Science 258(5087): 1463-1466.
Roy, D. and M. R. Lieber (2009). 'G clustering is important for the initiation of transcription-induced R-loops in vitro, whereas high G density without clustering is sufficient thereafter.' Mol Cell Biol 29(11): 3124-3133.
Roy, D., K. Yu and M. R. Lieber (2008). 'Mechanism of R-loop formation at immunoglobulin class switch sequences.' Mol Cell Biol 28(1): 50-60.
Roy, D., Z. Zhang, Z. Lu, C. L. Hsieh and M. R. Lieber (2010). 'Competition between the RNA transcript and the nontemplate DNA strand during R-loop formation in vitro: a nick can serve as a strong R-loop initiation site.' Mol Cell Biol 30(1): 146-159.
Salvi, J. S. and K. Mekhail (2015). 'R-loops highlight the nucleus in ALS.' Nucleus 6(1): 23-29.
Santos-Pereira, J. M. and A. Aguilera (2015). 'R loops: new modulators of genome dynamics and function.' Nat Rev Genet 16(10): 583-597.
Sawitzke, J. A. and S. Austin (2000). 'Suppression of chromosome segregation defects of Escherichia coli muk mutants by mutations in topoisomerase I.' Proceedings of the National Academy of Sciences of the United States of America 97(4): 1671-1676.
Sordet, O., C. E. Redon, J. Guirouilh-Barbat, S. Smith, S. Solier, C. Douarre, C. Conti, A. J. Nakamura, B. B. Das, E. Nicolas, K. W. Kohn, W. M. Bonner and Y. Pommier (2009). 'Ataxia telangiectasia mutated activation by transcription- and topoisomerase I-induced DNA double-strand breaks.' EMBO Rep 10(8): 887-893.
Usongo, V., C. Tanguay, F. Nolent, J. E. Bessong and M. Drolet (2013). 'Interplay between type 1A topoisomerases and gyrase in chromosome segregation in Escherichia coli.' J Bacteriol 195(8): 1758-1768.
Vologodskii, A. V. and N. R. Cozzarelli (1994). 'Conformational and thermodynamic properties of supercoiled DNA.' Annu Rev Biophys Biomol Struct 23: 609-643.
Von Borstel, R. C. (1978). 'Measuring spontaneous mutation rates in yeast.' Methods Cell Biol 20: 1-24.
Vos, S. M., E. M. Tretter, B. H. Schmidt and J. M. Berger (2011). 'All tangled up: how cells direct, manage and exploit topoisomerase function.' Nat Rev Mol Cell Biol 12(12): 827-841.
Wahba, L., J. D. Amon, D. Koshland and M. Vuica-Ross (2011). 'RNase H and multiple RNA biogenesis factors cooperate to prevent RNA:DNA hybrids from generating genome instability.' Mol Cell 44(6): 978-988.
Wang, J. C. (2002). 'Cellular roles of DNA topoisomerases: a molecular perspective.' Nat Rev Mol Cell Biol 3(6): 430-440.
Xu, B. and D. A. Clayton (1996). 'RNA-DNA hybrid formation at the human mitochondrial heavy-strand origin ceases at replication start sites: an implication for RNA-DNA hybrids serving as primers.' EMBO J 15(12): 3135-3143.
Yu, K., F. Chedin, C. L. Hsieh, T. E. Wilson and M. R. Lieber (2003). 'R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells.' Nat Immunol 4(5): 442-451.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67289-
dc.description.abstract當細胞進行轉錄時,去氧核醣核酸(DNA)的拓樸結構會隨之改變:當核糖核酸聚合酶(RNA polymerase)向前移動進行轉錄時,前方的DNA構型將累積正向超螺旋(positive supercoils),而在轉錄機制後方的DNA則會形成負向超螺旋結構(negative supercoils)。新生成的RNA偶有機會與模板DNA形成配對,此時這個結構包含RNA-DNA雜交體(hybrid)、以及裸露出的非模板單股DNA,稱為R-loop。根據我們實驗室與其他科學家先前的研究,即使R-loop在細胞的DNA複製、轉錄、及基因表達上扮有相當重要的角色,過多R-loop的存在卻也可能造成基因不穩定性而危害細胞。因此,細胞中有許多調控R-loop生合成的因子。本論文使用大腸桿菌作為模式生物系統,去探討具解決DNA負向超螺旋功能的DNA拓樸異構酶I(topoisomerase I, TopA)以及具解決DNA正向超螺旋功能的DNA旋轉酶(gyrase),對於R-loop調控的作用機轉。為此目的,我們使用了以下四種方法去檢測R-loop的形成:(i)使用純化的S9.6抗體來直接地偵測細胞內RNA-DNA雜交體的多寡;(ii)在細菌中大量表現活化誘導胞密啶核苷脫氨酶(activation-induced cytidine deaminase, AID),利用其作用於R-loop上單股DNA將胞嘧啶(cytosine)轉變為尿嘧啶(uracil)的特性,求得AID誘發突變倍數(AID-induced mutagenesis fold, ASM fold);(iii)細菌絲狀生長現象(bacterial filamentation);以及(iv)質體DNA超螺旋檢測(supercoiling assay of plasmid reporter)。如同我們所預期,我們發現在TopA缺陷的細胞有較高的S9.6訊號及較高的ASM fold,顯示TopA可能藉由其解決負向超螺旋之功能,在R-loop的調控上扮有抑制之角色。此外,在累積過多的染色體損壞而未修復的情況下,細菌會啟動SOS response,表現大量參與染色體修復的基因,延遲細胞分裂,使細菌免於死亡,此反應會造成細胞的型態改變,產生絲狀生長的現象。與R-loop可能導致DNA損壞的概念一致,我們發現在TopA缺陷的細胞中確實有絲狀生長的現象。此外,由於負向超螺旋可能導致R-loop,而R-loop的生成將有機會伴隨著過度負向超螺旋(hyper-negative supercoil)。我們亦發現在TopA缺陷的狀況下會產生過度負向超螺旋的現象。綜合以上結果,我們認為TopA在抑制R-loop的形成扮有重要的角色。接著,在一隻gyrase溫度敏感的菌株RFM445 [gyrB203 (Ts) gyrB221 (CouR)]中,我們發現相較於在攝氏28度時的表現型,其在37度時的表現型(較低的gyrase活性)有較高的RNA-DNA雜交體訊號、細菌絲狀生長、以及過度負向超螺旋現象。總結來說,我們的結果顯示過多的R-loop可能導致細胞絲狀生長、較高的突變機率、以及過度負向超螺旋現象。TopA作用於抑制R-loop生成,並在維持基因穩定性(genome instability)扮演重要的角色,而gyrase對於R-loop的影響仍需進一步的研究。zh_TW
dc.description.abstractDuring transcription, the topological conformation of double-helical DNA changes: As RNA polymerase moving forward, the DNA segment ahead of RNA polymerase is constrained with positive supercoils, and the DNA part behind transcription machinery becomes negatively supercoiled (i.e. defined as the “twin-domain supercoiling model”). Occasionally, the nascent RNA inserts into negatively supercoiled DNA helix and thus hybridizing to the template DNA. This structure is called R-loop, containing the RNA-DNA hybrid, non-template ssDNA, and junctions of ssDNA and dsDNA regions. Based on our and other previous studies, though R-loop plays critical roles in DNA replication, transcription and gene expression, but it is also a hazardous source with excess amount of R-loop that may lead to genome instability and poor cell growth. Therefore, there are factors in cells tightly regulate the R-loop formation. Here, using bacteria E. coli as a genetic model system and according to twin-domain supercoiling model, we decided to focus first on the topological regulatory enzymes such as DNA topoisomerase I (TopA) and gyrase, which can resolve negative and positive supercoils respectively. To detect the R-loop formation, we had employed the following 4 assays: (i) S9.6 antibody; (ii) AID-stimulated mutagenesis (ASM); (iii) bacterial filamentation and (iv) reporter DNA supercoiling assays. Specifically, the S9.6 antibody recognizing the RNA-DNA hybrid was used as a direct tool to detect R-loops. The ASM assay was established by ectopic expression of AID to induce deamination of cytosine to uracil on the single-stranded DNA (ssDNA) portion of R-loop, thus leading to higher mutation rates and ASM fold, those indirectly represent the amount of R-loop. As expected, we found that the TopA-deficient cells have a higher level of S9.6 signal and an elevated ASM fold, suggesting that TopA had a role in suppressing R-loop formation, possibly through its activity in specifically resolving negative supercoils. It is known that DNA damage activates SOS response, increases expression of repair factors and arrest of cell division (causing a filamentation phenotype). Consistent with the notion that R-loop might lead to DNA damage and activation of SOS response, we had found that TopA deficiency resulted in cellular filamentous morphology. Also, since negative supercoiling might allow the formation of R-loop, it is presumable that R-loop formation is accompanied with hyper-negative supercoils. We found that TopA deficiency appeared to be hyper-negatively supercoiled in supercoiling assay. In sum, we suggested that TopA plays a dominant role in the suppressing of R-loop formation. Surprisingly, in a gyrase temperature-sensitive mutant strain RFM445 [gyrB203 (Ts) gyrB221 (CouR)], the elevated RNA-DNA hybrid signal, cellular filamentation phenotypes and hyper-negative supercoiling were found in a higher cultivation temperature (37°C, presumably a lower gyrase activity condition) compared to the lower one (28°C). However, the cellular filamentous phenotype might also result from the gyrase deficiency and corresponding DNA replication, chromosome segregation problems … and so on. In conclusion, our results thus suggest that excess amount of R-loop might lead to elevated cellular filamentation, higher mutagenesis rate and hyper-negative supercoiling phenotypes. TopA functions mainly in inhibition of R-loop formation and thus plays a significant role in maintaining genome stability, while the functional role of gyrase on R-loop still needs further investigations.en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:26:41Z (GMT). No. of bitstreams: 1
ntu-106-R04445130-1.pdf: 1318866 bytes, checksum: b8c312333c2a10e72abc15835eb547c4 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents致謝……………………………………………………………………………………...i
中文摘要………………………………………………………………………………..ii
ABSTRACT…………………………………………………………………………….iv
INTRODUCTION……………………………………………………………………….1
1. R-loop…………………………………………………………………………………1
1.1 Formation of R-loop.. ………………………………………………………….…1
1.2 Biological functions of R-loops.. …………………………………………………3
1.2.1 R-loop-mediated genome instability and related diseases.. ………………….4
1.2.2 R-loop and cell growth……. ………………………………………………...4
1.2.3 R-loop-mediated antibody diversification in B cells…………………………5
1.3 Regulation of R-loop……………………………………………………………...6
2. DNA topoisomerases…..…………………………………………..…………….……7
2.1 Type I DNA topoisomerases……………………………………………………....8
2.2 Type II DNA topoisomerases……………………………………………………...9
2.3 The ability of DNA topoisomerase I and gyrase in relaxation of supercoilings…..9
SPECIFIC AIM…………………………………………………………………………11
MATERIALS AND METHODS……………………………………………………….12
Escherichia coli strains and plasmids….……………………...……………………..12
Medium and growth conditions….…………………………………………………..12
Antibodies…. ………………………………………………………………………..12
Dot blot analysis……………………………………………………………………..13
Preparing competent cells…………………………………………………………....13
Transformation…...………………………………………………………………….14
AID-stimulated mutagenesis (ASM)……...…………………………………………14
Efficiency of Plating..………………………………………………………………..15
Preparing cell lysates for Western blot analysis……………………………………..16
Western blot analysis………………………………………………………………...16
Fluorescence microscopy………..………………………………………………..…17
Supercoiling assay…………………………………………………………………...17
Atomic force microscopy……………………………………………………………18
Statistical Analysis…..………………………………………………………………18
RESULTS…….…………………………………..………………………………….…20
The strain RFM445 and RFM475 were validated by coumermycin resistance test…20
1. The role of TopA in the regulation of R-loop formation………………………..20
1.1 The AID-stimulated mutagenesis (ASM) fold of TopA deficient strain is higher compared to the wild type…………………………………………...20
1.2 Higher RNA-DNA hybrid signal was found in TopA deficient or deletion cells……………………………………….....................................................21
1.3 The S9.6 signaling is reduced by RNase H.....................................................22
1.4 The DNA of TopA deficient cells were hyper-negatively supercoiled……...22
1.5 Absence of TopA caused abnormal morphology of bacteriacells………....…23
2. The role of gyrase in regulation of R-loop formation…………………………..23
2.1 Higher RNA-DNA hybrid signal was found in gyrase deficient cells….…... 23
2.2 The S9.6 signaling is reduced by RNase H……………………………....…..24
2.3 Gyrase had no significant effect on mutation frequency in the ASM assay. ...24
2.4 The DNA of gyrase deficient cells were hyper-negatively supercoiled…...…25
2.5 Absence of gyrase caused abnormal morphology of bacteria cells……....…..25
The role of TopA and gyrase in regulation of R-loop formation…………………….25
DISCUSSION……………………………………………………………………….….27
Cellular filamentous morphology and its relation with SOS response……………....27
Directly observing R-loop by Atomic Force Microscopy (AFM)…………………...27
Like RNase H, TopA plays a dominant suppressive role in R-loop formation……...28
The role of gyrase conflicts to our hypothesis………………………………..……...29
1. Gyrase deficiency causes filamentous morphology in bacteria cells…………..29
2. Higher S9.6 signal in gyrase deficient cells conflicts to the ASM data in the previous works………………………………………………………………….....30
The temperature effect and gyrB221 (couR) mutation might be two of the reasons that the role of gyrase conflicts to our hypothesis………………………………………..30
REFERENCES………………………………………………………………………....32
TABLES AND FIGURES……. ………………………….……………………………39
Table I. Escherichia coli strains used in this study…………………………….…….39
Table II. Plasmids used in this study………. ……………………………………….40
Figure 1. RFM445 and RFM475 both had a higher resistance to coumermycin, consistent with its genotype property…...……….....…………………….41
Figure 2. AID-stimulated mutagenesis (ASM) was elevated in the TopA deficient strain……………………………………………………………………...42
Figure 3. Higher RNA-DNA hybrid signal was found in the TopA deficient cells....43
Figure 4. Higher RNA-DNA hybrid signal was found in the TopA deletion or gyrase deficient cells……………………………………...…………………...…44
Figure 5. AID-stimulated mutagenesis (ASM) fold had no significance difference when gyrase was deficient.…….................................................................46
Figure 6. Plasmids extracted from bacteria cells with different topoisomerase deficiencies appear with different superhelical states..…………………..47
Figure 7. TopA deletion and gyrase deficient strains both showed a filamentous morphology.……………………………………………………….…...…49
dc.language.isoen
dc.titleR-loop形成之拓樸調控機制研究zh_TW
dc.titleMechanistic study on the topological regulation of R-loop formationen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄧述諄(Shu-Chun Teng),詹迺立(Nei-Li Chan)
dc.subject.keywordR-loop,DNA拓樸異構?I,DNA旋轉?,轉錄,S9.6,活化誘導胞密啶核?脫氨?,基因不穩定性,zh_TW
dc.subject.keywordR-loop,Topoisomerase I,gyrase,Transcription,S9.6,activation-induced deaminase (AID),genome instability,en
dc.relation.page51
dc.identifier.doi10.6342/NTU201702617
dc.rights.note有償授權
dc.date.accepted2017-08-07
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept微生物學研究所zh_TW
顯示於系所單位:微生物學科所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  目前未授權公開取用
1.29 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved