請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67276
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張慶源 | |
dc.contributor.author | Bo-Liang Liu | en |
dc.contributor.author | 劉柏良 | zh_TW |
dc.date.accessioned | 2021-06-17T01:26:10Z | - |
dc.date.available | 2027-08-31 | |
dc.date.copyright | 2017-08-10 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-08-07 | |
dc.identifier.citation | 1. ATAG (Air transpot action group). Beginner’s guide to aviation biofuels ATAG (2017).
2. Bouchy C, Schmidt I, Anderson JR, Jacobsen CJH, Derouane EG, Hamid S BDA. Metastable fcc α-MoC 1− x supported on HZSM5: preparation and catalytic performance for the non-oxidative conversion of methane to aromatic compounds. J Molecular Catalysis A: Chemical 2000, 163 (1/2), 283-296. 3. Beeck O. Hydrogenation catalysts. Discussions of the Faraday Society 1950, 8, 118-128. 4. Claridge JB, York AP, Brungs AJ, Marquez AC, Sloan J, Tsang SC, Green MLH. New catalysts for the conversion of methane to synthesis gas: molybdenum and tungsten carbide. Journal of Catalysis 1998, 180 (1), 85-100. 5. CPC (China Petroleum Corporation of Taiwan). The properties of Jet A-1 and Gasoline 2016. 6. Dahiya A, Bioenergy: Biomass to Biofuels. Academic Press, Cambridge, Massachusetts, USA (2014). 7. Evans G. International Biofuels Strategy Project. Liquid Transport Biofuels - Technology Status Report. NNFCC 08-017. National Non-Food Crops Centre, York, North Yorkshire, UK. (2008-04-14). (Retrieved on 2011-02-16). 8. Horiuti I, Polanyi M. Exchange reactions of hydrogen on metallic catalysts. Transactions of the Faraday Society 1934, 30, 1164-1172 International Energy Agency/Organization for Economic Cooperation and Development. 9. Hudlicky M. Reductions in organic chemistry. American Chemical Society, Washington, D.C. USA (1996). 10. IEA/OECD (International Energy Agency/Organization for Economic Cooperation and Development). Effect of reactive gas on the solid-state transformation of molybdenum trioxide to carbides and nitrates. Key World Energy Statistics. Edition 2016 (2016). 11. Li S, Kim WB, Lee JS. Effect of the reactive gas on the solid-state transformation of molybdenum trioxide to carbides and nitrides. Chemistry of materials 1998, 10(7), 1853-1862. 12. Meerwein H, Emster KV. About the equilibrium isomerism between bornyl chloride isobornyl chloride and camphene chlorohydrate. Berichte 1922, 55 (8/16), 2500-2528. 13. Mohanty S, Kunzru D, Saraf DN. Hydrocracking: a review. Fuel 1990, 69(12), 1467-1473. 14. Nelson VC, Starcher KL. Introduction to Bioenergy. CRC Press, Boca Raton, Florida,USA (2016). 15. Rana MS, Samano V, Ancheyta J, Diaz JAI. A review of recent advances on process technologies for upgrading of heavy oils and residua. Fuel 2007, 86(9), 1216-1231. 16. Rzepa HS, Allan CS. Racemization of isobornyl chloride via carbocations: a non-classical look at a classic mechanism. J Chemical Education 2010, 87(2), 221-228. 17. Shafizadeh F. Introduction to pyrolysis of biomass. J Analytical and Applied Pyrolysis 1982, 3(4), 283-305. 18. Šimáček P, Kubička D. Hydrocracking of petroleum vacuum distillate containing rapeseed oil: evaluation of diesel fuel. Fuel 2010, 89(7), 1508-1513. 19. Steijns M, Froment G. Jacobs P, Uytterhaeven J, Weitkamp J. Hydroisomerization and hydrocracking. 2. Product distributions from n-decane and n-dodecane. Industrial & Engineering Chemistry Product Research and Development 1981, 20(4), 654-600. 20. TBOE (Taiwan Bureau of Energy). Taiwan Statistics. Edition 2016. 21. Vansina H, Baltanas MA, Froment GF. Hydroisomerization and hydrocracking. 4. Product distribution from n-octane and 2, 2, 4-trimethylpentane. Industrial & Engineering Chemistry Product Research and Development 1983, 22(4), 526-531. 22. Venkata, BK. WBA Global Bioenergy Statistics 2014. World Bioenergy Association (WBA), Stockholm, Sweden (2014). 23. Wicks F. The oil age. Mechanical Engineering 2009, 131(8), 42-45. 24. Wang H, Male J, Wang Y. Recent advances in hydrotreating of pyrolysis bio-oil and its oxygen-containing model compounds. ACS Catalysis 2013, 3(5), 1047-1070. 25. Xiao T, York APE, Coleman KS, Claridge JB, Sloan J, Charnock J, Green MLH. Effect of carburising agent on the structure of molybdenum carbides. J Materials Chemistry 2001, 11(12), 3094-2098. 26. Zeng D, Smith MJH. Room-temperature synthesis of molybdenum and tungsten carbides, Mo2C and W2C, via chemical reduction methods. Chemistry of Materials 1992, 4, 968-970. 27. 江勝偉. 以表面改質鉬基觸媒由合成氣產製烷類及醇類之研究, 博士論文,臺北, 臺灣:臺灣大學環境工程學研究所 (2012). 28. 林世雄. 石油煉製工程, 中國石化出版社, 北京, 中國2003. 29. 林俊雄. 黑黝黝的液體黃金石油提煉. 科學發展期刊, 382(10), 25-29 (2004). 30. 黃莉軒. 生質油品氫化改質研究, 碩士論文, 臺北, 臺灣:臺灣大學環境工程學研究所 (2016). 31. 黄福長. 國内外油桐發展現況. 佛山科學技術學院學報: 自然科學版, 29(3), 83-87 (2011). 32. 蘇有勇, 劉士清, 張無敵, 劉偉偉. 小桐油製備生物柴油的研究. 能源工程, 1, 22-26 (2006). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67276 | - |
dc.description.abstract | 本研究使用碳化鉬觸媒,批覆在活性氧化鋁顆粒之表面,進行桐油氫化裂解改質轉製成可用於航空油或汽油的生質油品。利用可卸式觸媒床填充自行合成的觸媒於高溫下進行批次式反應探討溫度(T)、氫氣壓力(PH2)、持溫時間(t)、不同觸媒、觸媒添加量(MC)、桐油添加量及二階段(觸媒裂解及氫化觸媒裂解)反應對於桐油改質後之生質油品的產率(YBFO)與特性(酸價、碘價、密度、熱值、碳數分布及元素組成等)之影響,並找出最適反應條件。以製備可用於航空燃料油或是汽油的生質油品。同時對反應過程產生的副產物(固體、氣體),作相關分析(產率、熱值、元素分析等)。
研究可以概分為四部分。第一部分為Mo2C觸媒製備技術之開發。第二部分為桐油觸媒裂解改質試驗,利用不同溫度條件與不同觸媒(Mo2C/γ-Al2O3及γ-Al2O3)進行試驗。第三部分為桐油直接裂解改質試驗,利用不同氮氣壓力進行試驗。第四部分為桐油觸媒氫化裂解,利用不同氫氣壓力、桐油使用量、持溫時間、觸媒添加量及二階段反應條件進行試驗。 研究結果顯示,桐油主要組成碳數為C16~C22之不飽和脂肪酸。使用Mo2C/γ-Al2O3為觸媒進行觸媒裂解時,於623 K, 100 psig Ar, 20 min,在觸媒添加量MC = 1 wt%時,生質油產物BFO中時之C1~C9的含量(MC1C9)為73 wt%,碳數降低的效果相當顯著,其熱值約為47 MJ/kg, YBFO為65 vol%。在直接裂解試驗中,氮氣壓力越高,裂解效果越佳,其MC1C9及熱值越高,於623 K,100 psig N2, 20 min時,MC1C9為66 wt%,熱值為58 MJ/kg, YBFO = 78 vol%。在觸媒氫化裂解試驗中,觸媒添加量增加時,氧元素含量降低及熱值升高。於623 K, 100 psig H2, 40 min,在MC = 5 wt%時,氧含量為1.5 wt%,MC1C9 = 82 wt%,熱值為38 MJ/kg, YBFO = 53 vol%。在階段反應觸媒氫化裂解試驗中,二階段反應的熱值及產率皆表現不佳,但MC1C9高。若是在一階段反應於623 K, 100 psig H2, 40 min, MC = 1 wt%時,MC1C9 = 76 wt%,熱值為34 MJ/kg,YBFO為65 vol%。二階段反應於623 K, 100 psig N2, (20 min), 100 psig H2, (40 min), MC = 1 wt%時,MC1C9 = 83 wt%,熱值為30 MJ/kg,YBFO為52 vol%,在最適條件時(623 K, 100 psig H2, 20 min, MC = 1 wt%,最高總效能指數 (Overall performance index) PIt = 0.80 ),BFO之MC1C9 = 73 wt%, HV= 54 MJ/kg, YBFO = 67 vol%,其酸價及熱值皆符合航空燃油之燃料油品標準規範。從物種分析結果,顯示產物中有C7~C17的直鏈狀烷類,可見以本研究所提之觸媒氫化裂解方法生產可用的生質油品是可行的。因此,若將產出的生質油品加以分餾收集,將可以與航空燃料或汽油中摻配使用或直接使用。 | zh_TW |
dc.description.abstract | This study took advantages of using self-manufactured catalysts which were made by adding Mo2C on the surface of γ-Al2O3 particles to conduct the catalytic hydrocracking of tung oil. Tung oil was converted to bio-fuel oil (BFO) as an alternative of aviation fuels or fuel oils. The batch system was designed for the catalytic hydrocracking with a removal packed bed filled with catalyst at a present temperature. By varying experimental conditions, this study was performed to investigate the effects of reaction temperature (T), hydrogen pressure (PH2), holding time (t), types of catalysts, amount of catalyst added (MC), volume of raw tung oil (VLO), and two-stage reaction on the system performances. These include yields of the produced BFOs (YBFO) and their characteristics, such as acid value (AV), iodine value (IV), density (ρLO), heating value (HV), distribution of carbon numbers, and content of (MC1C9), C1~C9 elemental composition. In the same time, products of solid and gas were also analyzed for the related characteristics.
The study consists of four parts. The first part was the development of method for preparation of Mo2C based catalysts. The second part was catalytic cracking of tung oil with different reaction temperatures and catalysts (γ-Al2O3 and Mo2C/γ-Al2O3). For the third part, direct cracking of tung oil under different nitrogen pressures was conducted. The forth part was catalytic hydrocracking of raw tung oil with different hydrogen pressures, holding times, volumes of raw tung oil, amounts of catalyst added, and types of processes with one or two stages of reactions. The results showed that tung oil is mainly composed of C16 ~ C22 unsaturated fatty acids. In the catalytic cracking with Mo2C/γ-Al2O3, it achieved MC1C9 = 73 wt%, HV = 47 MJ/kg, and YBFO = 65 vol% at 623 K, 100 psig Ar, 20 min, and MC = 1 wt%. For the direct cracking, the higher the nitrogen pressure, the better the effect of cracking giving higher MC1C9 and HV. At 623 K, 100 psig N2, and 20 min, MC1C9 in BFO was 66 wt% and HV and YBFO of BFO were 58 MJ/kg and 78 vol%, respectively. In the catalytic hydrocracking test, an increasing of catalyst reduced the oxygen content while enhanced the heating value of BFO. At 623 K, 100 psig H2, 40 min, and MC = 5wt%, the oxygen content was 1.5wt%, while MC1C9 = 82 wt%, HV = 38 MJ / kg, and YBFO = 53 vol%. In the stage-wise catalytic hydrocracking , HV and YBFO of BFO of the two-stage reaction were moderate while with high MC1C9. If applying one stage reaction at 623 K, 100 psig H2, 40 min, and MC = 1 wt%, values of MC1C9, HV, and YBFO of BFO were 76 wt%, 34 MJ/kg, and 65 vol%, respectively. For the two-stage reaction, at 623 K, 100 psig N2 (20 min, first stage), 100 psig H2 (40 min, second stage), and MC = 1 wt%, the values of MC1C9, HV, and YBFO were 83 wt%, 30 MJ/kg, and 52 vol%, respectively. For the case with highest overall performance index (PIt) of 0.80 at 623 K, 100 psig H2, 20 min, and MC = 1 wt%, the BFO had MC1C9 = 73 wt%, HV = 54 MJ/kg, and YBFO = 67 vol% with the AV and HV satisfying with the standards of aviation fuel oil. Further, from the results of species analysis, it was found that there were C7 ~ C17 straight chain alkanes in the products. Thus, it is feasible to produce the available BFO via the catalytic hydrocracking used in this study. Therefore, by fractionating the BFO, it can be blended in aviation fuel or gasoline or used directly as fuel oil. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T01:26:10Z (GMT). No. of bitstreams: 1 ntu-106-R04541129-1.pdf: 3387834 bytes, checksum: 10107f1d38a02b5ce122a17c1884b08c (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | Content
Abstract i 摘要 iv List of Figures x List of Tables xv Nomenclature and Abbreviation xxi Chapter 1 Introduction 1 1.1 Backgrounds 1 1.2 Objectives 2 1.3 Expected achievement 2 Chapter 2 Literature Review 4 2.1 Development of oil industry 4 2.2 Development and application of bioenergy 5 2.3 Technology of hydrocracking 10 2.3.1 Pyrolysis and its mechanism 10 2.3.2 Hydrogenation 11 2.4 Characteristics and application of tung tree species 11 2.4.1 Characteristics of tung tree species 12 2.4.2 Application of tung oil 12 2.4.3 Characteristics of tung oil 12 2.5 Selection of catalyst 13 2.5.1 Species of hydrogenation catalyst 13 2.5.2 Support of hydrogenation catalyst 16 2.5.3 Species of hydrocracking catalyst 16 2.5.4 Support of hydrocracking catalyst 17 2.5.5 Molybdenum carbide 18 2.6 Low carbon fuels 19 2.6.1 Jet engine fuel 19 2.6.2 Gasoline 20 Chapter 3 Experimental Procedures 34 3.1 Experiment design 34 3.2 Materials 36 3.2.1 Tung oil 36 3.2.2 Chemicals and gases 36 3.2.3 Experimental equipment 37 3.2.4 Analysis equipment 37 3.3 Experimental methods 38 3.3.1 Catalyst production 38 3.3.2 Hydrocracking 39 3.4 Analytical methods 39 3.4.1 Liquid sample analysis 40 3.4.2 Solid products analysis 51 3.4.3 Gas products analysis 55 Chapter 4 Results and Discussion 61 4.1 Characteristics of tung Oil 61 4.1.1 Fundamental properties of tung oil 61 4.1.2 Composition analysis of tung oil 63 4.1.3 Thermal gravimetric analysis 71 4.2 Characteristics of catalysts 71 4.2.1 Particle physical characteristics of catalyst 73 4.2.2 Composition of catalyst 80 4.3 Catalytic cracking 82 4.3.1 Liquid product 82 4.3.2 Solid product 93 4.3.3 Gas product 97 4.3.4 Mass, carbon, and hydrogen balance 97 4.4 Direct cracking 100 4.4.1 Liquid product 100 4.4.2 Solid product 113 4.4.3 Gas product 113 4.4.4 Mass, carbon, and hydrogen balance 116 4.5 Catalytic hydrocracking 120 4.5.1 Liquid product 120 4.5.2 Solid product 136 4.5.3 Gas product 136 4.5.4 Mass, carbon, and hydrogen balance 141 4.6 Stage catalytic hydrocracking and deactivation of catalyst 146 4.6.1 Liquid product 146 4.6.2 Solid product 156 4.6.3 Gas product 160 4.6.4 Mass, carbon, and hydrogen balance 160 4.7 Comprehensive discussion 164 Chapter 5 Conclusions and Suggestions 181 5.1 Conclusions 181 5.2 Suggestions 182 References 183 Appendix A Reaction temperature and pressure changes 188 Appendix B The effect of adding Mo2C with tung oil. 193 | |
dc.language.iso | en | |
dc.title | 以碳化鉬觸媒進行批次式桐油氫化裂解產製生質油品之研究 | zh_TW |
dc.title | Production of Bio-Oil by Hydrocracking of Tung Oil with Molybdenum Carbide Catalyst in Batch System | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 章裕民,謝哲隆 | |
dc.subject.keyword | 桐油,催化裂解,直接裂解,催化氫化裂解,碳化鉬,生質燃料油, | zh_TW |
dc.subject.keyword | Tung oil,catalytic cracking,direct cracking,catalytic hydrocracking,bio- fuel oil, | en |
dc.relation.page | 194 | |
dc.identifier.doi | 10.6342/NTU201702724 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-08-08 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
顯示於系所單位: | 環境工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 3.31 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。