請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67261完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 于天立(Tian-Li Yu) | |
| dc.contributor.author | Yen-Cheng Chang | en |
| dc.contributor.author | 張晏誠 | zh_TW |
| dc.date.accessioned | 2021-06-17T01:25:31Z | - |
| dc.date.available | 2020-08-24 | |
| dc.date.copyright | 2020-08-24 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-18 | |
| dc.identifier.citation | [1] S. Agrawal and N. Goyal. Analysis of thompson sampling for the multi-armedbandit problem. InConference on Learning Theory, pages 39–1, 2012. [2] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmedbandit problem.Machine Learning, 47(2):235–256, 2002. [3] A. Beygelzimer, S. Dasgupta, and J. Langford. Importance weighted activelearning.ACM International Conference Proceeding Series, 382, 12 2009. [4] C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector machines.ACM Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011. [5] W. Chu, M. Zinkevich, L. Li, A. Thomas, and B. Tseng.Unbiased onlineactive learning in data streams.In Proceedings of the 17th ACM SIGKDDInternational Conference on Knowledge Discovery and Data Mining, 195–203.,2011. [6] A. Coates, A. Ng, and H. Lee. An Analysis of Single Layer Networks in Unsu-pervised Feature Learning. InAISTATS, 2011. [7] D. Cohn, L. Atlas, and R. Ladner. Improving generalization with active learn-ing.Machine Learning, 15(2):201–221, 1994. [8] S. Dasgupta and D. Hsu. Hierarchical sampling for active learning. InProceed-ings of the 25th International Conference on Machine Learning, pages 208–215,01 2008.61 [9] K. Fischer, B. G ̈artner, and M. Kutz. Fast smallest-enclosing-ball computationin high dimensions. InESA, 2003. [10] E. Hoffer and N. Ailon. Deep metric learning using triplet network. InIn-ternational Workshop on Similarity-Based Pattern Recognition, pages 84–92,2015. [11] H. Hsu. Verified instances and verifiability: An alternative theoretical prospec-tive of learning. Master’s thesis, National Taiwan University, 2018. [12] W.-N. Hsu and H.-T. Lin. Active learning by learning. InTwenty-Ninth AAAIConference on Artificial Intelligence, 2015. [13] S. jun Huang, R. Jin, and Z. hua Zhou. Active learning by querying informativeand representative examples. Inin Advances in Neural Information ProcessingSystems ,NIPS, pages 892–900, 2010. [14] A. Krizhevsky, G. Hinton, et al.Learning multiple layers of features fromtiny images. Master’s Thesis, Department of Computer Science, University ofToronto, 2009. [15] Y. LeCun, C. Cortes, and C. Burges. Mnist handwritten digit database.ATTLabs, 2, 2010. [16] D. D. Lewis and J. Catlett. Heterogeneous uncertainty sampling for super-vised learning. InIn Proceedings of the Eleventh International Conference onMachine Learning, pages 148–156. Morgan Kaufmann, 1994. [17] M. Lindenbaum, S. Markovitch, and D. Rusakov. Selective sampling for nearestneighbor classifiers.Machine Learning, 54:125–152, 02 2004. [18] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng. Readingdigits in natural images with unsupervised feature learning. 2011.62 [19] F. e. a. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-chine learning in Python. [20] H. Robbins. Some aspects of the sequential design of experiments.Bulletin ofthe American Mathematical Society, 58(5):527–535, 1952. [21] P. Schachter and T. Shopen. Parts-of-speech systems.Language typology andsyntactic description, 1:3–61, 1985. [22] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified embedding forface recognition and clustering.2015 IEEE Conference on Computer Visionand Pattern Recognition, CVPR, 2015. [23] B. Settles. Active learning literature survey. Computer Sciences TechnicalReport 1648, University of Wisconsin–Madison, 2009. [24] S. Tong and D. Koller. Support vector machine active learning with applicationsto text classification.The Journal of Machine Learning Research, 2:45–66, 122001. [25] E. Trucco and K. Plakas. Video tracking: A concise survey.IEEE Journal ofOceanic Engineering, 31(2):520–529, 2006. [26] R. Wang, S. Kwong, and D. Chen. Inconsistency-based active learning forsupport vector machines.Pattern Recognition, 45(10):3751–3767, 2012. [27] K. Q. Weinberger, J. Blitzer, and L. K. Saul. Distance metric learning for largemargin nearest neighbor classification. In Y. Weiss, B. Sch ̈olkopf, and J. C.Platt, editors,Advances in Neural Information Processing Systems 18, pages1473–1480. MIT Press, 2006.63 [28] W. Xiong, L. Xie, S. Zhou, and J. Guan. Active learning for protein functionprediction in protein–protein interaction networks.Neurocomputing, 145:44–52,2014. [29] Y.-Y. Yang, S.-C. Lee, Y.-A. Chung, T.-E. Wu, S.-A. Chen, and H.-T. Lin.libact: Pool-based active learning in python.arXiv preprint arXiv:1710.00379,2017. [30] J. Yu. Measuring verifiability using monte carlo methods for linear separators.Master’s thesis, National Taiwan University, 2018.[31] S. Zagoruyko and N. Komodakis.Wide residual networks.CoRR,abs/1605.07146, 2016. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67261 | - |
| dc.description.abstract | 在監督的機器學習中,主動學習是一項重要的技術,可減輕標註訓練資料所需的工作量。主動學習中的大多數詢問策略都是基於訓練過後的分類器。但是,在許多實際應用中,經過訓練的分類器直到查詢、標記和訓練才發現許多實例根本不准確。在本文中,我考慮了來自資料空間和訓練過後的分類器的信息,目的是減少在主動學習中達到預定的準確性所需的詢問數量。 可驗證性強化之主動式學習(VEAL)是一種基於池的技術,它使用可驗證性的概念來詢問資料,可驗證性的概念定義為被版本空間中所有分類器正確分類的實例的比例。我進一步將VEAL與不確定性指標以及一些隨機程序結合起來,使用多臂吃角子老虎技術來實現總體上更穩定的性能。 實驗結果表明,對於在二元分類中進行20個詢問(池中的800個查詢)之後,VEAL和其他最新技術之間的平均準確度差異個別為0.25\%(對uncertainty)、 -0.048 \% (對ALBL)、 1.01\% (對QUIRE)。在相同的實驗設置下,與MAB結合使用時,MAB-VEAL的準確率高於uncertainty 0.85\%、高於ALBL 0.29\%、高於QUIR 1.62\%。 對於多類分類中,VEAL和其他最新技術(選擇最佳的嵌入空間)之間的準確性差異在MNIST上為-0.04 \%、在CIFAR-10上為-0.08 \%、在STL-10上為-0.22 \%、在SVHN上為0.18 \%。同樣地,MAB-VEAL和其他最新技術的準確性差異在MNIST上為-0.09\%、在CIFAR-10上為0.8\%、在STL-10上為-0.16\%、在SVHN上為0.31\%。儘管對多類分類器沒有明確定義驗證性,但與其他最新技術方法相比,VEAL和MAB-VEAL仍產生了有競爭性的結果。 | zh_TW |
| dc.description.abstract | In supervised machine learning, active learning is an important technique which alleviates the effort needed for labeling training data. Most of the query strategies in active learning are based on the trained classifier; however, in many real-world applications, the trained classifier is not at all accurate until many instances have been queried, labeled, and trained. In this thesis, I consider the information from both instance space and the trained classifier, aiming to reduce the number of queries needed to achieve a predefined level of accuracy in active learning. The proposed verifiability enhanced active learning (VEAL) is a pool-based technique which queries instances using the concept of verifiability, which is defined as the proportion of instances that are correctly classified by all classifiers in the version space. I further combine VEAL with the uncertainty indicator as well as some stochastic behaviors by the multi-armed bandit techniques to achieve a more stable performance in general. Empirically, for binary classification, after 20 queries (out of 800 in the pool), the average accuracy differences between VEAL and other state-of-the-art (SOTA) methods are 0.25\% vs. uncertainty; -0.048\% vs. ALBL; 1.01\% vs. QUIRE. Combined with MAB, under the same experiment setup, MAB-VEAL outperformed uncertainty by 0.85\% on average, and outperformed ALBL by 0.29\% on average, and outperformed QUIRE by 1.62\% on average. For multi-class classification, the accuracy differences between VEAL and other SOTA methods (with their most preferable embeddings) are -0.04\% on MNIST, -0.08\% on CIFAR-10, -0.22\% on STL-10 and 0.18\% on SVHN. Similarly, that for MAB-VEAL are -0.09\% on MNIST, 0.8\% on CIFAR-10, -0.16\% on STL-10 and 0.31\% on SVHN. Although verifiabilty was not specifically defined for multi-class cases, VEAL and MAB-VEAL still yielded competitive results compared with other SOTA methods. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T01:25:31Z (GMT). No. of bitstreams: 1 U0001-1608202013593400.pdf: 7753949 bytes, checksum: 4cf8f790607702f3721f729ae1822081 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 誌謝 iii 摘要 v Abstract vii 1 Introduction . . . . . . . . . . . . . . 1 2 Preliminaries . . . . . . . . . . . . . 5 2.1 Active Learnin . . . . . . . . . . . . . . 5 2.2 Verifiability . . . . . . . . . . . . . . 6 2.3 Triplet Networ . . . . . . . . . . . . . . 7 2.4 Multi-Armed Bandit Problem . . . . . . . . . . . . . . . 7 3 Verifiability Optimization . . . . . . . . . . . . . . . 9 3.1 Procedure . . . . . . . . . . . . . . 10 3.1.1 Hard positive sampler . . . . . . . . . . . . . . 11 3.1.2 Approximate verifiability . . . . . . . . . . . . . 13 3.2 Analysis . . . . 16 3.2.1 Performances of instance-based indicators . . . . . . . . 17 3.2.2 Information gain. . . . . . . . . . . . . . . . 18 3.2.3 Minimum accurac. . . . . . . . . . . . . . . 19 4 Verifiability Enhances Active Learning (VEAL) . . . . . . . . . . . . . . 21 4.1 Procedure . . . . . . . . . . . . . . 22 4.2 Analysis . . . . . . . . . . . . . . 23 4.2.1 Performances. . . . . . . . . . . . . . . . . . 23 4.2.2 Top-n candidates. . . . . . . . . . . . . . . . 25 4.2.3 Compatibility with different classifiers . . . . . . . . .26 5 Verifiability Enhanced Active Learning Using Multi-armed Bandit(MAB-VEAL) . . . 29 5.1 Procedure . . . . . . . . . . . . . . 30 5.2 Analysis . . . . . . . . . . . . . . 30 5.2.1 Performances. . . . . . . . . . . . . . . . . . 31 5.2.2 Compatibility with different classifiers . . . . . . . . .34 5.2.3 Comparison on different multi-armed bandit method. . . . 35 5.2.4 Combinations of query strategies. . . . . . . . . . . 36 6 Experiments . . . . . . . . . . . . . . 39 6.1 Experiment Dataset. . . . . . . . . . . . . . . . . . 39 6.1.1 Synthetic datasets . . . . . . . . . . . . . . . 39 6.1.2 Real-world datasets . . . . . . . . . . . . . . .40 6.2 Experiment Settings. . . . . . . . . . . . . . . . . . 41 6.3 Experiment Result. . . . . . . . . . . . . . . . . .41 6.3.1 Comparison of synthetic datasets. . . . . . . . . . . 41 6.3.2 Compatibility with different classifiers . . . . . . . . .42 6.3.3 Comparison of different embedding spaces. . . . . . . . 46 6.3.4 Comparison of real-world datasets . . . . . . . . . . 49 6.3.5 Investigation of multi-class dataset. . . . . . . . . . 56 7 Conclusion . . . . . . . . . . . . . . 59 Bibliography . . . . . . . . . . . . . . 61 | |
| dc.language.iso | en | |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | 主動式學習 | zh_TW |
| dc.subject | 可驗證性 | zh_TW |
| dc.subject | 不確定性 | zh_TW |
| dc.subject | 多臂吃角子老虎機 | zh_TW |
| dc.subject | 置信度上限 | zh_TW |
| dc.subject | verifiability | en |
| dc.subject | multi-armed bandit | en |
| dc.subject | uncertainty | en |
| dc.subject | machine learning | en |
| dc.subject | upper confidence bounds | en |
| dc.subject | active learning | en |
| dc.title | 使用多臂吃角子老虎機進行可驗證性強化之主動式學習 | zh_TW |
| dc.title | Verifiability Enhanced Active Learning Using Multi-armed Bandit | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李宏毅(Hung-Yi Lee),雷欽隆(Chin-Laung Lei),王奕翔(I-Hsiang Wang) | |
| dc.subject.keyword | 機器學習,主動式學習,可驗證性,不確定性,多臂吃角子老虎機,置信度上限, | zh_TW |
| dc.subject.keyword | machine learning,active learning,verifiability,uncertainty,multi-armed bandit,upper confidence bounds, | en |
| dc.relation.page | 64 | |
| dc.identifier.doi | 10.6342/NTU202003579 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-19 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1608202013593400.pdf 未授權公開取用 | 7.57 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
