Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67241
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李慧梅(Whei-May lee)
dc.contributor.authorPin-Hao Chuen
dc.contributor.author朱品豪zh_TW
dc.date.accessioned2021-06-17T01:24:44Z-
dc.date.available2020-08-25
dc.date.copyright2017-08-25
dc.date.issued2017
dc.date.submitted2017-08-08
dc.identifier.citation1. Abdullahi, K.L., Delgado-Saborit, J.M. and Harrison, R.M. (2013). Emissions and Indoor Concentrations of Particulate Matter and Its Specific Chemical Components from Cooking: A Review. Atmos. Environ. 71: 260–294
2. Adachi K , Tainosho Y. (2004). Characterization of heavy metal particles embedded in tire dust. Environment International. 30(8):1009-1017.
3. Al-Rajhi M , Seaward M , Al-Aamer A. (1996). Metal levels in indoor and outdoor dust in Riyadh , Saudi Arabia. Environment International. 22(3):315-324.
4. Alves, C., Duarte, M., Nunes, T., Moreira, R., Rocha, S., 2014. Carbonaceous particles emitted from cooking activities in Portugal. Global NEST J. 16, 411–419.
5. Andreu-Sevilla, A., Hartmann, A., Burló, F., Poquet, N., Carbonell-Barrachina,A., 2009. Health benefits of using red palm oil in deep-frying potatoes:Low acrolein emissions and high intake of carotenoids. Food Scienceand Technology International, 15(1): 15-22.
6. Ashraf, M. W. (2012). Levels of heavy metals in popular cigarette brands and exposure to these metals via smoking. The Scientific World Journal, 2012.
7. ATSDR, A. (2000). Toxicological profile for toluene. US Public Health Service, 1-357.
8. ATSDR. (2007). Toxicological Profile for Xylene.
9. Baez, A., H. Padilla, R. Garcia, M. D. Torres, I. Rosas and R. Belmont. (2003). Carbonyl levels in indoor and outdoor air in Mexico City and Xalapa, Mexico. Science of the Total Environment 302(1-3): 211-226.
10. Báez, A., Padilla, H., Garcı́a, R.o., Torres, M.d.C., Rosas, I., Belmont, R., 2003.Carbonyl levels in indoor and outdoor air in Mexico city and Xalapa,Mexico. Science of the Total Environment, 302(1): 211-226.
11. Baumgartner J., Schauer J.J., Ezzati M., Lu L., Cheng C., Patz J.A., Bautista L.E. (2011). Indoor air pollution and blood pressure in adult women living in rural China. Environ. Health Perspect., 119:1390.
12. Brooks, B. O., G. M. Utter, J. A. Debroy and R. D. Schimke. (1991). Indoor air-pollution - an edifice complex. Journal of Toxicology-Clinical Toxicology 29(3): 315-374.
13. C.P. Weisel, S. Alimokhtari, P.F. Sanders, Indoor air VOC concentrations in suburban and rural New Jersey, Environ. Sci. Technol. 42 (2008) 8231–8238.
14. Caggiano R, Macchiato M, Trippetta S. Levels. (2010).Chemical composition, and sources of fine aerosol particles (PM1) in an area of the Mediterranean basin. Science Total Environment. 408:884–95.
15. Chen, J. W., Wang, S. L., Hsieh, D. P. H., Yang, H. H., & Lee, H. L. (2012). Carcinogenic potencies of polycyclic aromatic hydrocarbons for back-door neighbors of restaurants with cooking emissions. Science of the total environment, 417, 68-75.
16. Cheng Y, Zou SC, Lee SC, Chow JC, Ho KF, Watson JG, et al. (2011). Characteristics and source apportionment of PM1 emissions at a roadside station. J Hazard Mater ;195:82–91.
17. CHENG Jing-chen, CUI Tong, HE Wan-qing, NIE Lei, WANG Jun-ling, PAN Tao.(2015). Pollution Characteristics of Aldehydes and Ketones Compounds in the Exhaust of Beijing Typical Restaurants[J]. Environmental Science, 36(8): 2743-2749.
18. Chiang Kuo-Chih. (2006). Heavy incense buring in temples promotes exposure risk from airborne PMs and carcinogenic PAHs. Science of the Total Environment,372:64-75.
19. Clarisse, B., Lauren, A. t, Seta, N., Le Moullec, Y., El Hasnaoui, A., Momas, I. (2003) . Indoor aldehydes: Measurement of contamination levels andidentification of their determinants in Paris dwellings. EnvironmentalResearch, 92(3): 245-253.
20. Dan, E.D., Ebong, G.A. (2013). Impact of cooking utensils on trace metal levels of processed food items. Ann. Food Sci. Technol. 14 (2), 350–355.
21. Donald S. Mottram, Bronislaw L. Wedzicha & Andrew T. Dodson (2002). Acrylamide is formed in the Maillard reaction. Food chemistry. Nature, Food chemistry, 448-449.
22. Duong, A., C. Steinmaus, C. M. McHale, C. P. Vaughan and L. Zhang. (2011). Reproductive and developmental toxicity of formaldehyde: A systematic review. Mutation Research-Reviews in Mutation Research 728(3): 118-138.
23. Eileen Abt ,Helen H. Suh ,Paul Catalano , and Petros Koutrakis. (2000). Relative Contribution of Outdoor and Indoor Particle Sources to Indoor Concentrations .Environment Science&Technology., 34 (17), 3579–3587
24. Eva Hollbacher , Thomas Ters , Cornelia Rieder-Gradinger , Ewald Srebotnik. (2016). Emissions of indoor air pollutants from six user scenarios in a model room
25. Feng Y , Barratt R . Lead and cadmium composition in door dust. (1994). The Science of Total Enviroment. 152(3):261-267.
26. Fullana A, Carbonell-Barrachina AA, Sidhu S. (2004). Comparison of volatile aldehydes present in the cooking fumes of extra virgin olive, olive, and canola oils [J]. J Agric Food Chem, 52(16): 5207–5214.
27. Gemenetzis P, Moussas P, Arditsoglou A, Samara C. (2006). Mass concentration and elementalcomposition of indoor PM2.5 and PM10 in University rooms in Thessaloniki,northern Greece. Atmos Environ ;17:3195–206.
28. Gilbert, N.L., Guay, M., David Miller, J., Judek, S., Chan, C.C., Dales, R.E. (2005). Levels and determinants of formaldehyde, acetaldehyde, andacrolein in residential indoor air in Prince Edward Island, Canada.Environmental Research, 99(1): 11-17.
29. Hunt A , Johnson D L , Griffith D A. (2014). Mass transfer of soil indoors by track-in footwear. Science od Total Environment. 370(2):360-371.
30. H. Guo, F. Murray, S. Wilkinson. (2000). Evaluation of total volatile organic compoundemissions from adhesives based on chamber tests, J. Air Waste Manage. Assoc.50, 199–206.
31. Hines, A. L.,K. G. Tushar, K. L. Sudarshan and C. W. Jr. Richand, (1993). “Indoor Air: Quality and Control, ” PTR Prentice Hall Englewood Cliffs, New Jersey, USA.
32. IARC. (1983). IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans: Polynuclear Aromatic Compounds, Part 1, Chemical, Environmental and Experimental Data.
33. International Agency for Research on Cancer. (2004). IARC classifies formaldehyde as carcinogenic to humans. Press release. June, 15.
34. J.E. Colman Lerner , E.Y. Sanchez , J.E. Sambeth , A.A. Porta. (2012). Characterization and health risk assessment of VOCs in occupationalenvironments in Buenos Aires, Argentina
35. Janson, C., Anto, J., Burney, P., Chinn, S., de Marco, R., Heinrich, J., Jarvis, D., Kuenzli, N., Leynaert, B., Luczynska, C., Neukirch, F., Svanes, C., Sunyer, J., Wjst, M. (2001). The European community respiratory health survey: what are the main results so far? Eur. Respir. J. 18, 598–611.
36. Järup, L. (2003). Hazards of heavy metal contamination. British medical bulletin, 68(1), 167-182.
37. Jones, A. P. (1999). Indoor air quality and health. Atmospheric environment, 33(28), 4535-4564.
38. Kabir, E., K. H. Kim, J. W. Ahn, O. F. Hong and J. R. Sohn. (2010). Barbecue charcoal combustion as a potential source of aromatic volatile organic compounds and carbonyls. J Hazard Mater 174(1-3): 492-499
39. Kim, H., & Lee, S. B. (2012). Charcoal grill restaurants deteriorate outdoor air quality by emitting volatile organic compounds. Pol J Environ Stud, 21, 1667-73.
40. Klepeis NE, Nelson WC, Ott WR et al. (2001) The National Human Activity Pattern Survey (NHAPS): A Resource for Assessing Exposure to Environmental Pollutants. Journal of Exposure Analysis and Environmental Epidemiology. 11(3):231-252.
41. Kuligowski J, Halperin KM. Stainless steel cookware as a significant source of nickel,chromium, and iron. (1992). Arch Environ Contam Toxicol ; 23:211–5.
42. Lai, A. C. K., & Ho, Y. W. (2008). Spatial concentration variation of cooking-emitted particles in a residential kitchen. Building and Environment, 43(5), 871-876.
43. Lee, S. C., Guo, H., Li, W. M., & Chan, L. Y. (2007). Concentration comparison of the indoor air pollutants identified from restaurants with different cooking and ventilationmethods.
44. Lee, S. C., Li, W. M., & Chan, L. Y. (2001). Indoor air quality at restaurants with different styles of cooking in metropolitan Hong Kong. Science of the Total Environment, 279(1), 181-193.
45. Lina Wang , ,Zhiyuan Xiang, Svetlana Stevanovic , Zoran Ristovski , Farhad Salimi , Jun Gao , Hongli Wang , Li Li. (2017). Role of Chinese cooking emissions on ambient air quality and human health. Science of the Total Environment, 589:173-181.
46. Liu, Q., L. Yang, C. Gong, G. Tao, H. Huang, J. Liu, H. Zhang, D. Wu, B. Xia, G. Hu, K. Wang and Z. Zhuang. (2011). Effects of long-term low-dose formaldehyde exposure on global genomic hypomethylation in 16HBE cells. Toxicology Letters 205(3): 235-240.
47. Marchand, C., B. Buillot, S. Le Calve and P. Mirabel. (2006). Aldehyde measurements in indoor environments in Strasbourg (France). Atmospheric Environment 40(7): 1336-1345.
48. Matsunaga, I., Miyake, Y., Yoshida, T., Miyamoto, S., Ohya, Y., Sasaki, S., ... & Child Health Study Group. (2008). Ambient formaldehyde levels and allergic disorders among Japanese pregnant women: baseline data from the Osaka maternal and child health study. Annals of epidemiology, 18(1), 78-84.
49. Occupational Safety and Health Administration Regulation Standard Number 1910.1048
50. Oeder S, Dietrich S, Weichenmeier I, Schober W, Pusch G, Jörres RA. (2000). Toxicity andelemental composition of particulate matter from outdoor and indoor air of elementaryschools in Munich, Germany. Indoor Air ;22:148–58.
51. Pope III, C. A., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., Ito, K., & Thurston, G. D. (2002). Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. Jama, 287(9), 1132-1141.
52. Rasmussen P , Subramanian K , Jessiman B. (2001). A multi-element profile of house dust in relation to exterior dust and soils in the city of Ottawa. The Science of the Total Enviroment. 267(1):125-140.
53. Robinson JP and Blair J. (1995). Estimating exposure to pollutants through human activity pattern data: the national micro-environmental activity pattern survey. Annual Report, Survey Research Center, University of Maryland, College Park, Maryland.
54. S.C. Lee, B. Wang. (2004) Characteristics of emissions of air pollutants from burning of incense in a large environmental chamber, Atmos. Environ. 38, 941–951.
55. Salthammer, T., S. Mentese and R. Marutzky. (2010). Formaldehyde in the Indoor Environment. Chemical Reviews 110(4): 2536-2572.
56. Seonyeop Lee, Sol Yu and Sungroul Kim. (2017). Evaluation of Potential Average Daily Doses (ADDs) of PM2.5 for Homemakers Conducting Pan-Frying Inside Ordinary Homes under Four Ventilation Conditions. Environmental Research and Public Health. 14,78.
57. Senlin L, Zhenkun Y, Xiaohui C, Minghong W, Guoying S, Jiamo F, et al. (2008). The relationshipbetween physicochemical characterization and the potential toxicity of fine particulates(PM2.5) in Shanghai atmosphere. Atmos Environ ;42:7205–14.
58. Sioutas, C., Delfino, R. J., & Singh, M. (2005). Exposure assessment for atmospheric ultrafine particles (UFPs) and implications in epidemiologic research. Environmental health perspectives, 947-955.
59. Singh, R., Gautam, N., Mishra, A., & Gupta, R. (2011). Heavy metals and living systems: An overview. Indian journal of pharmacology, 43(3), 246.
60. Straif, K., Baan, R., Grosse, Y., Secretan, B., El Ghissassi, F., Cogliano, V., & WHO International Agency for Research on Cancer Monograph Working Group. (2006). Carcinogenicity of household solid fuel combustion and of high-temperature frying. The lancet oncology, 7(12), 977-978.
61. Susaya, J., Kim, K. H., Ahn, J. W., Jung, M. C., & Kang, C. H. (2010). BBQ charcoal combustion as an important source of trace metal exposure to humans. Journal of hazardous materials, 176(1), 932-937.
62. Tsaia Perng-Jy, Shihb Tung-Sheng, Chena Hsiao-Lung, Leec Wen-Jhy, Laid Ching-Huang, Lioud Saou-Hsing. (2004). Assessing and predicting the exposure of polycyclic aromatic hydrocarbons(PAHs) and their carcinogenic potencies from vehicle engine exhausts to highway toll station workers. Atmospheric Environment,38:333-343.
63. Tong S T , Lam K C. Home sweet home ? A case study of household dust contamination in Hong Kong. (2000). The Science of Total Enviroment. 256(2):115-123.
64. Wallace, L. (1996). Indoor particles: a review. Journal of the Air & Waste Management Association, 46(2), 98-126.
65. Wallace, L. A., Mitchell, H., T O'Connor, G., Neas, L., Lippmann, M., Kattan, M. & Study, I. C. A. (2003). Particle concentrations in inner-city homes of children with asthma: the effect of smoking, cooking, and outdoor pollution. Environmental Health Perspectives, 111(9), 1265.
66. Wineforaner J.D. (1989). Chemical Analysus of Polycyclic Aromatic Compounds John Wiley&Sons , New York
67. Yang, H. H., Chien, S. M., Lee, H. L., Chao, M. R., Luo, H. W., Hsieh, D. P., & Lee, W. J. (2007). Emission of trans, trans-2, 4-decadienal from restaurant exhausts to the atmosphere. Atmospheric Environment, 41(26), 5327-5333.
68. Yang CC, Jenq SN, Lee H. (1998). Characterization of the carcinogen 2-amino-3,8-dimethylimidazo【4,5-f】quinoxaline in cooking aerosols under domestic conditions. Carcinogenesis vol.19 no.2 pp.359–363
69. Zhang, J., P. J. Lioy and Q. He. (1994). Characteristics of aldehydes: concentrations, sources, and exposures for indoor and outdoor residential microenvironments. Environmental Science & Technology 28(1): 146-152.
70. Zhang, Q., Gangupomu, R., Ramirez, D., Zhu, Y. (2010). Measurement of ultrafine particles and other air pollutants emitted by cooking activities. Int. J. Environ. Res. Public Health 7, 1744–1759.
71. 台灣勞工作業環境空氣中有害物容許濃度標準資料表,http://law.moj.gov.tw/LawClass/LawContent.aspx?PCODE=N0060004。
72. 室內空氣質素管理小組. (2003). 辦公室及公共場所室內空氣管理指引.香港特別行政區政府:室內空氣質素管理小組。
73. 厚生勞動省. (2013). 建築物環境衛生管理基準. 日本:厚生勞動省。
74. 國民健康署,http://www.hpa.gov.tw/Pages/List.aspx?nodeid=441
75. 張騰. (2016). 餐飲油煙中PM2.5的化學組份特徵。《環境科學研究》2016年第2期。
76. 彭炳樺. (1993). 台灣裡地區大氣中多環芳香烴污染特性之研究.國立成功大學環境重研究所碩士論文。
77. 方宗聖. (2014). 四種餐飲業用餐空間室內空氣品質之研究. 中原大學生物環境工程研究所學位論文。
78. 李宜勳,(2014).高雄市餐飲業醛酮化合物排放特徵。國立中山大學環境工程研究所碩士論文。
79. 楊淳卉, (2011). 不同型式餐飲業餐廚廢氣之污染特性。嘉南藥理科技大學環境工程與科學系暨研究所。
80. 洪增淵, (2004). 演講廳之室內環境品質調查與分析。朝陽科技大學環境工程與管理系碩士論文。
81. 粘金傳, ( 2011). 室內二氧化碳濃度偵測分析研究—以彰化縣國民中小學電腦教室為例。大葉大學工學院碩士論文。
82. 鐘宜夏. (2003).大氣多環芳香烴化合物氣-固相分布研究.國立高雄第一科技大學環境與安全衛生工程系碩士論文。
83. 馬雪惠, (2014). 室內溫熱環境與總揮發性有機化合物之調查研究―以雲林科技大學為例。國立雲林科技大學營建工程系碩士論文。
84. 高玫鍾 & 龍世俊. (2000). 香客在寺廟中懸浮微粒曝露濃度之探討. 中華公共衛生雜誌, 19(2), 138-143。
85. 吳明蒼&潘致弘, (2013). 廚師罹患肺腺癌本土性流行病學研究。
86. 張舒婷&李曉燕,(2014). 城市室內灰塵重金屬的水平及來源。環境化學33卷第7期。
87. 苗卿華,安玉奇&孫立德. (2012). 新型納米塗料提升保障房室內環境質量。中國住宅設施:23-24。
88. 溫志仁,米孝萱. (2008). 餐飲油煙排放多環芳香烴化合物之減量效益。嘉南藥理科技大學:環境工程與科學系碩士班論文。
89. 王 敏,印红玲,李乾钱,李晓,李世平,袁桦蔚. (2013). 川菜烹調源VOCs排放濃度及特徵分析,環境化學32卷第9期。
90. 吳奉書. (2014). 室內木炭燃燒產生空氣污染物之研究. 國立臺灣大學環境工程學研究所。
91. 杜紹甫. (2015). 室內燒烤空氣污染物排放因子之研究. 國立臺灣大學環境工程學研究所。
92. 邱昭瑜. (2016). 室內燒烤產生空氣污染物之研究. 國立臺灣大學環境工程學研究所。
93. 台灣區冷凍空調工程工業同業公會. 每小時各場所換氣次數參考數值表. http://www.hvac-net.org.tw/index2fram.php。
94. 行政院內政部統計處.簡易生命表http://sowf.moi.gov.tw/stat/Life。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67241-
dc.description.abstract本實驗選用燒烤店家常使之木炭炭精,以添加肉品與A品牌烤肉醬等組合以模擬實際燒烤產生之污染物排放情形,並針對添加肉品與添加烤肉醬兩種因子 對於各類污染物之排放差異比較,利用粉塵監測儀(EPAM-5000)、雙粒徑分道採樣器、多氣體分析儀(HM-5000)、Tenax-TA吸附劑、DNPH化學吸收分析燒烤過程中產生之PM2.5、HC、CO、CO2、NOx、醛酮化合物、揮發性有機物、重金屬之排放濃度,並計算成排放速率與排放因子。
結果顯示,添加肉品與醬料對於各類污染物(HC、CO、CO2、PM2.5、醛酮化合物、揮發性有機物)排煙管廢氣與暴露濃度均有顯著差異。燒烤豬五花肉添加烤肉醬產生之一氧化碳、二氧化碳、碳氫化合物、甲醛、乙醛、丙烯醛、丁醛、苯、甲苯、乙苯、鄰二甲苯、苯乙烯與細懸浮微粒(PM2.5)濃度相較於其他實驗組合產生之濃度來的高。一氧化碳平均排放濃度420.84 ppm,二氧化碳平均排放濃度為1208.80 ppm,碳氫化合物平均排放濃度為2.74 ppm,甲醛平均排放濃度為369.15 ppb,甲醛平均暴露濃度為40.64 ppb,乙醛平均排放濃度187.36 ppb,乙醛平均暴露濃度為25.86 ppb,丙烯醛平均排放濃度為64.36 ppb,丙烯醛平均暴露濃度為4.53 ppb,丁醛平均排放濃度為22.47 ppb,丁醛平均暴露濃度為1.39 ppb,苯平均排放濃度為80.35 ppb,苯平均暴露濃度為7.37 ppb,甲苯平均排放濃度為63.27 ppb,甲苯平均暴露濃度為5.32 ppb,乙苯平均排放濃度為6.89 ppb,乙苯平均暴露濃度為0.52 ppb,鄰二甲苯平均排放濃度為3.96 ppb,鄰二甲苯平均暴露濃度0.19 ppb,苯乙烯平均排放濃度0,44 ppb,苯乙烯平均暴露濃度為0.14 ppb,細懸浮微粒(PM2.5)平均排放濃度為10.35 mg/m3,細懸浮微粒平均暴露濃度為0.28 mg/m3。將各實驗組合重金屬排放因子依照大小順序排列均為:鋁>銅>鐵>鋅>鉻,根據實驗結果發現鋁、銅、鐵之排放因子較鉻與鋅高出許多,占總排放因子之41.07%~43.75%、32.77%~34.98%、12.88%~13.91%、6.55%~6.93%、3.61%~4.14%。
本實驗燒烤排煙設備對於氣狀污染物之捕集效率為72.97%~75.06%,另外對於粒狀污染物(PM2.5)捕集效率為80.90%。在此捕集效率之排煙設備下,氣相污染物與粒狀污染物(PM2.5)暴露濃度與實際排放濃度之比值為0.03~0.10、0.02~0.06。考慮實際店家坪數與烤肉爐數量關係以及室內通風之情形,各組實驗之健康風險結果未包含PAHs,且各組實驗計算出之總致癌風險值均小於10-6,以燒烤豬五花肉添加烤肉醬為最高總致癌風險值6.79x10-7;總危害指數均大於1,亦以燒烤豬五花肉添加烤肉醬為最高總危害指數1.70。
整體而言,燒烤添加肉品與烤肉會產生較高濃度之污染物,且燒烤油脂含量較高之肉品與添加醬料均會提高污染物之排放濃度,除此之外,還會產生丙烯醛,丁醛、乙苯、鄰二甲苯與苯乙烯等物質。因此燒烤過程中,應盡量避免肉品中之油脂滴落至高溫之木炭表面。
zh_TW
dc.description.abstractThis experiment choose the charcoal wildly used by most barbecue restaurant, carbon, imitating production of air pollutant when customer barbecued adding meat and sauce, then utilizing dust monitor(EPAM-5000)、muti-gas analyze(HM-5000)、Partisol Model 2000-D Dichotomous Air Sampler、Tenax-Ta sorbent 、DNPH chemical adsorption to analyst the emissions of PM2.5、HC、CO、CO2、NOx、carbonly compounds、volatile organic cousompounds and heavy metal from barbecue. The emission data was calculated as emission rates and emission factors.
Experimental results show that adding meat and sauce for the emission concentration of various air pollutant(PM2.5、HC、CO、CO2、carbonly compounds、volatile organic cousompounds) have significant differences.Grilling side pork with sauce produced the highest PM2.5、HC、CO、CO2、carbonly compounds、volatile organic cousompounds concentration. The average emission concentration of the HC、CO、CO2 is 2.74 ppm、420.84 ppm、1208.80 ppm. The average emissed concentration of formaldehyde、acetaldehyde、acrolein、butyraldehyde is 369.15 ppb、187.36 ppb、64.36 ppb、22.47 ppb. The average escaped concentration of formaldehyde、acetaldehyde、acrolein、butyraldehyde is 40.64 ppb、25.86 ppb、4.53 ppb、1.39 ppb. The average emissed concentration of benzene、toluene、ethylbenzene、O-xylene、styrene is 80.35 ppb、63.27 ppb、6.89 ppb、3.96 ppb、0.44 ppb. The average escaped concentration of benzene、toluene、ethylbenzene、O-xylene、styrene is 7.37 ppb、5.32 ppb、0.52 ppb、0.19 ppb、0.14 ppb. The average emissed concentration of fine particle (PM2.5) is 10.35 mg/m3. The average escaped concentration of fine particle (PM2.5) is 0.28 mg/m3.
According to the result of the experiment, sorted the emission factors of the heavy metal by value:Aluminum (Au) > Copper (Cu) > Iron (Fe) > Zinc (Zn) > Chromium (Cr). The emission of the Aluminum、Copper and Iron are much larger than Zinc and Chromium, Aluminum、Copper、Iron、Zinc and Chromium count for 41.07%~43.75%、32.77%~34.98%、12.88%~13.91%、6.55%~6.93% and 3.61%~4.14%.
The collected efficiency of the ventilation equipment for gas phase and particle phase pollutants is the range of 72.97%~75.06% and 80.90%. Under this collected efficiency, the ratio of exposure concentration to actual discharge concentration for gas phase pollutants and fine suspended particles is 0.03~0.10、0.02~0.06. Also, under this collected efficiency, all of the total carcinogenic risk is lower than 10-6, grilling side pork with sauce has the highest cancer risk 6.79x10-7. All of the total hazard index is larger than 1, grilling side pork with sauce has the highest hazard index is 1.70. The result of the health risk didn’t contain polycyclic aromatic hydrocarbons(PAHs).
In general, adding meat and sauce could produce higher air pollutants than without adding additivies. Also, grilling meat content mucher fat and adding sauce could enhance emission concentration of the air pollutants, will produced acrolein、butyraldehyde、ethylbenzene、O-xylene、styrene. Therefore, customer should avoild dripping fat on the surface of the high-temperature charcoal.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:24:44Z (GMT). No. of bitstreams: 1
ntu-106-R04541132-1.pdf: 2788648 bytes, checksum: 6fb37e6a38186cdd307923447464cd47 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents致謝 I
中文摘要 II
英文摘要 IV
目錄 VI
圖目錄 X
表目錄 XII
第一章 前言 1
1.1研究緣起 1
1.2研究目的 2
1.3研究內容與方法 2
第二章 文獻回顧 4
2.1室內空氣品質現況 4
2.1.1 室內空氣品質標準 4
2.1.2 室內空氣污染物種類 8
2.1.3 室內空氣污染物種來源 8
2.2常見之室內空氣污染物 11
2.2.1 一氧化碳 11
2.2.2 二氧化碳 12
2.2.3 TVOCs 13
2.2.4 碳氫化合物 17
2.2.5 懸浮微粒 20
2.2.6 重金屬 22
2.3烹調燃料與油煙污染 26
2.4餐飲業空氣污染 29
第三章 材料與方法 36
3.1 實驗流程 36
3.2 實驗材料與藥品 38
3.2.1 實驗藥品與材料 38
3.2.2 實驗儀器設備 39
3.3 實驗系統 40
3.3.1 燃燒裝置系統 40
3.3.2 排煙裝置系統 41
3.3.3 環境測量與控制系統 41
3.3.4 樣品捕集與分析系統 41
3.4 燒烤實驗 43
3.4.1 實驗設計 43
3.4.2 木炭選擇 44
3.4.3 醬料選擇及醬料添加方式 45
3.4.4 燒烤肉類選擇 45
3.4.5 實驗空間環境與設備配置 46
3.4.6 排氣設備流量選擇 46
3.4.7 木炭基本特性分析 48
3.5 氣態醛類化合物測定 52
3.5.1 藥品配置 52
3.5.2 採樣分析 53
3.5.3 數據之品保與品管 54
3.5.4 數據計算 58
3.6 揮發性有機化合物測定 60
3.6.1 採樣與分析 60
3.6.2 檢量線製作 63
3.6.3 數據計算 65
3.7 重金屬測定 66
3.7.1 藥品配製 66
3.7.2 微波消化前處理與感應耦合電漿原子發射光譜法 66
3.7.3 數據計算 67
3.8 空氣污染物採集設備 67
3.8.1 手持式多氣體分析儀 67
3.8.1.1數據計算 68
3.8.2 粉塵監測儀 69
3.8.2.1 數據計算 69
3.8.3 雙粒徑分道採樣器 70
3.9 健康風險評估 71
第四章 結果討論 75
4.1 排煙設備捕集空氣污染物效率 75
4.2 一氧化碳、二氧化碳排放 77
4.3 碳氫化合物排放 84
4.4 氮氧化物排放 87
4.5 細懸浮微粒(PM2.5)排放 88
4.6 醛酮化合物排放 94
4.7 揮發性有機物排放 97
4.8 重金屬排放 103
4.9 木炭之灼燒減率 106
4.10污染物暴露濃度與實際排放濃度之關係性 107
4.11健康風險評估 108
第五章 結論與建議 114
5.1 結論 114
5.2 建議 117
參考文獻 118
附錄A 126
附錄B 143









圖目錄
圖1-1 實驗架構 3
圖2-1 室內空氣污染物相關污染物之分類 8
圖3-1 實驗流程圖 37
圖3-2炭烤爐示意圖 40
圖3-3實驗系統圖 42
圖3-4 醛酮化合物與2,4-二硝基苯胼之反應式 53
圖3-5 雙粒徑分道採樣器與EPAM-5000採樣濃度相關性 71
圖4-1 烤肉爐周遭無隔板 75
圖4-2 烤肉爐周遭有隔板 75
圖4-3 純燒炭精CO濃度隨時間變化圖 79
圖4-4 燒烤去骨牛小排CO濃度隨時間變化圖 79
圖4-5 燒烤去骨小排+A烤肉醬CO濃度隨時間變化圖 80
圖4-6 燒烤豬五花肉CO濃度隨時間變化圖 80
圖4-7燒烤豬五花肉+A烤肉醬CO濃度隨時間變化圖 81
圖4-8純燒炭精CO2濃度隨時間變化圖 81
圖4-9燒烤去骨牛小排CO2濃度隨時間變化圖 82
圖4-10燒烤去骨小排+A烤肉醬CO2濃度隨時間變化圖 82
圖4-11燒烤豬五花肉CO2濃度隨時間變化圖 83
圖4-12燒烤豬五花肉+A烤肉醬CO2濃度隨時間變化圖 83
圖4-13燒烤去骨牛小排HC濃度隨時間變化圖 85
圖4-14燒烤去骨小排+A烤肉醬HC濃度隨時間變化圖 86
圖4-15燒烤豬五花肉HC濃度隨時間變化圖 86
圖4-16燒烤豬五花肉+A烤肉醬HC濃度隨時間變化圖 87
圖4-17 EPAM純燒炭精PM2.5濃度隨時間變化圖 92
圖4-18 EPAM燒烤去骨牛小排PM2.5濃度隨時間變化圖 92
圖4-19 EPAM燒烤去骨小排+A烤肉醬PM2.5濃度隨時間變化圖 93
圖4-20 EPAM燒烤豬五花肉PM2.5濃度隨時間變化圖 93
圖4-21 EPAM燒烤豬五花肉+A烤肉醬PM2.5濃度隨時間變化圖 94
圖4-22單純燃燒炭精GC/MS層析圖 98
圖4-23燒烤去骨牛小排GC/MS層析圖 99
圖4-24燒烤去骨小排+A烤肉醬GC/MS層析圖 99
圖4-25燒烤豬五花肉GC/MS層析圖 100
圖4-26燒烤豬五花肉+A烤肉醬GC/MS層析圖 100
 
表目錄
表2-1 台灣及其他國家組織之室內空氣品質標準 7
表2–2室內環境中主要污染來源及污染物質 10
表2-3 一氧化碳含量對於人體吸入時間及中毒症狀 12
表2-4二氧化碳之急性暴露濃度與健康危害 13
表2-5室內揮發性有機物分類表 14
表2-6 室內常見VOCs對人體之危害 15
表2-7 不同甲醛濃度對於人體健康危害情形 17
表2-8 PAHs物種相對危害比值 19
表2-9不同粒徑大小之懸浮微粒特性與對人體危害 21
表2-10 室內金屬元素主要來源與其對人體之危害 22
表2-11台灣與美國勞工作業環境容許暴露濃度比較 25
表3-1 A品牌烤肉醬營養成分標示 44
表3-2去骨牛小排與豬五花肉肉品營養成分資料表 46
表3-3 炭精濕基高位發熱量結果分析 49
表3-4炭精近似分析結果 51
表3-5炭精之元素分析結果 52
表3-6 HPLC設定條件 54
表3-7羰基混合標準品之15種羰基化合物 55
表3-8 醛酮化合物檢量線回歸方程式 55
表3-9 甲醛及乙醛準確度分析結果 56
表3-10 丙烯醛及丁醛準確度分析結果 56
表3-11 甲醛及乙醛精確度分析結果 57
表3-12 丙烯醛及丁醛精確度分析結果 57
表3-13 各組實驗甲醛及乙醛穿透率結果 58
表3-14各組實驗丙烯醛及丁醛穿透率結果 58
表3-15 Tenax-TA性質 61
表3-16冷凝熱脫附儀之分析條件 62
表3-17揮發性有機物成分鑑定GC/MS 分析條件 63
表3-18 TO-1揮發性有機物種類 64
表3-19 揮發性有機物檢量線回歸方程式 64
表3-20手持式多種氣體分析儀規格 68
表3-21粉塵監測儀(EPAM-5000)操作參數 69
表4-1 排煙設備對各污染物之捕集效率 76
表4-2 各組實驗之一氧化碳排放結果(Mean±SD) 78
表4-3 各組實驗之二氧化碳排放結果(Mean±SD) 78
表4-4 各組實驗碳氫化合物排放結果(Mean±SD) 85
表4-5 時間過程三個時間點溫度量測結果 88
表4-6 EPAM排煙管廢氣濾紙秤重細懸浮微粒排放結果(Mean±SD) 90
表4-7雙粒徑分道採樣器暴露細懸浮濾紙秤重微粒結果(Mean±SD) 90
表4-8 EPAM排煙管廢氣光學連續濃度監測結果(Mean±SD) 91
表4-9 排煙管廢氣醛酮化合物排放結果(Mean±SD) 96
表4-10 暴露醛酮化合物排放濃度(ppb)結果(Mean±SD) 97
表4-11排煙管廢氣揮發性有機物排放結果(Mean±SD) 101
表4-12 暴露揮發性有機物排放濃度(ppb)結果(Mean±SD) 103
表4-13 排煙管廢氣重金屬排放結果(Mean±SD) 105
表4-14 暴露重金屬排放濃度(μg/m3)結果(Mean±SD) 106
表4-15木炭灼燒減率(%)結果 106
表4-16 污染物暴露濃度與實際排放濃度之比值 108
表4-17 吸入途徑單位風險與參考濃度 109
表4-18 日本民眾各式活動狀態下之呼吸率 110
表4-19用餐消費者情境模擬 111
表4-20連鎖燒烤店家室內空間與烤肉爐之總數 112
表4-21 室內環境模擬假設條件 112
表4-22 店內用餐消費者之致癌風險結果 112
表4-23醛酮化合物與PM2.5對於店內用餐消費者危害指數結果 113
表4-24揮發性有機物對於店內用餐消費者危害指數結果 113
表4-25店內用餐消費者總危害指數結果 113
表A-1純燒炭精(NO.1)油脂與醬料滴落情形 127
表A-2純燒炭精(NO.2)油脂與醬料滴落情形 128
表A-3純燒炭精(NO.3)油脂與醬料滴落情形 129
表A-4燒烤去骨牛小排(NO.1)油脂與醬料滴落情形 130
表A-5燒烤去骨牛小排(NO.2)油脂與醬料滴落情形 131
表A-6燒烤去骨牛小排(NO.3)油脂與醬料滴落情形 132
表A-7燒烤去骨牛小排添加A烤肉醬(NO.1)油脂與醬料滴落情形 133
表A-8燒烤去骨牛小排添加A烤肉醬(NO.2)油脂與醬料滴落情形 134
表A-9燒烤去骨牛小排添加A烤肉醬(NO.3)油脂與醬料滴落情形 135
表A-10燒烤豬五花肉(NO.1)油脂與醬料滴落情形 136
表A-11燒烤豬五花肉(NO.2)油脂與醬料滴落情形 137
表A-12燒烤豬五花肉(NO.3)油脂與醬料滴落情形 138
表A-13燒烤豬五花肉添加A烤肉醬(NO.1)油脂與醬料滴落情形 139
表A-14燒烤豬五花肉添加A烤肉醬(NO.2)油脂與醬料滴落情形 140
表A-15燒烤豬五花肉添加A烤肉醬(NO.3)油脂與醬料滴落情形 141
表A-16 建築物通風各場所每小時之標準換氣次數參考 142
目 錄
dc.language.isozh-TW
dc.title室內燒烤產生空氣污染之研究zh_TW
dc.titleEmission of Air Pollutants from Indoor Barbecueen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃小林,余國賓
dc.subject.keyword室內燒烤,zh_TW
dc.subject.keywordIndoor Barbecue,en
dc.relation.page146
dc.identifier.doi10.6342/NTU201702731
dc.rights.note有償授權
dc.date.accepted2017-08-08
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  目前未授權公開取用
2.72 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved