請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67229
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃耀輝(Yaw-Huei Hwang) | |
dc.contributor.author | Yun-Ting Yen | en |
dc.contributor.author | 顏筠庭 | zh_TW |
dc.date.accessioned | 2021-06-17T01:24:21Z | - |
dc.date.available | 2027-08-08 | |
dc.date.copyright | 2018-02-22 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-08-08 | |
dc.identifier.citation | Ackerman AH, Creed PA, Parks AN, Fricke MW, Schwegel CA, Creed JT, Heitkemper DT, Velal NP. Comparison of a chemical and enzymatic extraction of arsenic from rice and an assessment of the arsenic absorption from contaminated water by cooked rice. Environmental Science & Technology. 2005;39(14):5241-5246.
Aitchison J, Brown JAC. The lognormal distribution. Cambridge, UK: Cambridge University Press; 1957. ATSDR. Toxicological profile for arsenic. Agency for Toxic Substances and Disease Registry. US Department of Health and Human Services, Public Health Service, Atlanta, GA. 2007. Baeyens W, Gao Y, De Galan S, Bilau M, Van Larebeke N, Leermakers M. Dietary exposure to total and toxic arsenic in Belgium: Importance of arsenic speciation in North sea fish. Molecular Nutrition & Food Research. 2009;53(5):558-565. Batista BL, Souza JMO, De Souza SS, Barbosa JrF. Speciation of arsenic in rice and estimation of daily intake of different arsenic species by Brazilians through rice consumption. Journal of Hazardous Materials. 2011;191(1-3):342-348. Benjamin JR, Cornell CA. Probability, statistics, and decision for civil engineers. New York: McGraw Hill; 1970. Booth B. Arsenic in U.S. rice varies by region. Environmental Science & Technology. 2007;41:2075-2076. Booth B. Arsenic speciation varies with type of rice. Environmental Science & Technology. 2008;42(10):3484-3485. Carbonell-Barrachina AA, Signes-Pastor AJ, Vázquez-Araújo L, Burló F, Sengupta B. Presence of arsenic in agricultural products from arsenic-endemic areas and strategies to reduce arsenic intake in rural villages. Molecular Nutrition & Food Research. 2009;53(5):531-541. Carbonell-Barrachina AA, Wu X, Ramírez-Gandolfo A, Norton G, Burló F, Deacon C, Meharg AA. Inorganic arsenic contents in rice-based infant foods from Spain, UK, China and USA. Environmental Pollution. 2012;163:77-83. Chen HL, Lee CC, Huang WJ, Huang HT, Wu YC, Hsu YC, Kao YT. Arsenic speciation in rice and risk assessment of inorganic arsenic in Taiwan population. Environmental Science and Pollution Research. 2015;23(5):4481-4488. EC. Council directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. European Communities, Brussels. 1998 p. 10. EFSA. Scientific opinion on arsenic in food. EFSA panel on contaminants in the food chain (CONTAM). European Food Safety Authority, Parma, Italy; 2010 p. 1-199. EU. Amending regulation (EC) No 1881/2006 as regards maximum levels of inorganic arsenic in foodstuffs. European Union, Brussels: European commission; 2015 p. 3. Fontcuberta M, Calderon J, Villalbí JR, Centrich F, Portaña S, Espelt A, Nebot M. Total and inorganic arsenic in marketed food and associated health risks for the Catalan (Spain) population. Journal of Agricultural and Food Chemistry 2011;59(18):10013-10022. Francesconi K, Edmonds J. Arsenic and marine organisms. Advances in inorganic chemistry 1996;147-189. FSCJ. Risk assessment report arsenic in foods. Food Safety Commission Japan. Tokyo. 2013 p. 29-31. Gamble MV, Liu X, Ahsan H, Pilsner JR, Ilievski V, Slavkovich V, Parvez F, Levy D, Factor-Litvak P, Graziano JH. Folate, homocysteine, and arsenic metabolism in arsenic-exposed individuals in Bangladesh. Environmental Health Perspectives, 2005;113(12):1683-1688. Gray PJ, Conklin SD, Todorov TI, Kasko SM. Cooking rice in excess water reduces both arsenic and enriched vitamins in the cooked grain. Food Additives & Contaminants: Part A Chem Anal Control Expo Risk Assess 2016;33(1):78-85. Hattis DB, Burmaster DE. Assessment of variability and uncertainty distributions for practical risk analyses. Risk Analysis, 1994;14(5):713-730. Heitkemper DT, Vela NP, Stewart KR, Westphal CS. Determination of total and speciated arsenic in rice by ion chromatography and inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 2001;16(4):299-306. Hughes M, Beck B, Chen Y, Lewis A, Thomas D. Arsenic exposure and toxicology: A historical perspective. Toxicological Sciences 2011;123(2):305-332. IARC. Arsenic and inorganic arsenic compounds. In some inorganic and organometallic compounds. IARC Monographs on the evaluation of carcinogenic risk of chemicals to humans. Lyon, France: International Agency for Research on Cancer 1973;vol 2:p. 48-73. IARC. Arsenic and arsenic compounds. In some metals and metallic compounds. IARC Monographs on the evaluation of carcinogenic risk of chemicals to humans. Lyon, France: International Agency for Research on Cancer 1980;vol 23:p. 39-141. IARC. Monographs on the evaluation of carcinogenic risks to humans. A review of human carcinogens: Arsenic, metals, fibres, and dusts. Lyon, France: International Agency for Research on Cancer 2012;vol 100C:p. 41-93. Jin S. Survey report on the nutrition and health of Chinese residents: dataset on the status of nutrition and health in 2002. Beijing: People's Hygiene Press. 2008. Jobe J, Crow EL, Shimizu K. Lognormal distributions: Theory and applications. Technometrics 1989;31(3):392. JECFA. Seventy-second report of the Joint FAO/WHO Expert Committee on food additives. Evaluation of certain contaminants in food. Joint FAO/WHO Expert Committee on Food Additives. WHO Technical Reports Series, Rome, Italy 2010. JECFA. Safety evaluation of certain contaminants in food. Joint FAO/WHO Expert Committee on Food Additives. WHO Food Additives Series, No 63/FAO JECFA Monographs 8, Geneva, Switzerland 2011. JECFA. Distribution of the report of the eighth session of the codex committee on contaminants in foods. Food and Agriculture Organization of the United Nations/World Health Organization, The Hague: Codex Alimentarius Commission; 2014 p. 4-5. JECFA. Proposals for maximum levels for inorganic arsenic in husked rice. Food and Agriculture Organization of the United Nations/World Health Organization, Rotterdam: Codex Alimentarius Commission; 2016 p. 2-5. Lambrou A, Baccarelli A, Wright RO, Weisskopf M, Bollati V, Amarasiriwardena C, Vokonas P, Schwartz J. Arsenic exposure and DNA methylation among elderly men. Epidemiology 2012;23(5):668-676. Li G, Sun GX, Williams PN, Nunes L, Zhu YG. Inorganic arsenic in Chinese food and its cancer risk. Environment International 2011;37(7):1219-1225. Liang C, Liu C, Jang C, Wang S, Lee J. Assessing and managing the health risk due to ingestion of inorganic arsenic from fish and shellfish farmed in blackfoot disease areas for general Taiwanese. Journal of Hazardous Materials 2011;186(1):622-628. Liao CY, Peng CY, Wang HC, Kang HY, Paul Wang H. Extraction of arsenic from a soil in the blackfoot disease endemic area with ionic liquids. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 2011;652(1):925-927. Lu KL, Liu CW, Wang SW, Jang CS, Lin KH, Liao VH, Liao CM, Chang FJ. Assessing the characteristics of groundwater quality of arsenic contaminated aquifers in the blackfoot disease endemic area. Journal of Hazardous Materials 2011;185(2-3):1458-1466. Mandal BK, Suzuki KT, Anzai K. Impact of arsenic in foodstuffs on the people living in the arsenic-affected areas of West Bengal, India. Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances & Environmental Engineering 2007;42(12):1741-1752. Mar JL, Reyes LH, Rahman GM, Kingston HM. Simultaneous extraction of arsenic and selenium species from rice products by microwave-assisted enzymatic extraction and analysis by ion chromatography-inductively coupled plasma-mass spectrometry. Journal of Agricultural and Food Chemistry 2009;57(8):3005-3013. Marshall G, Ferreccio C, Yuan Y, Bates MN, Steinmaus C, Selvin S, Liaw J, Smith AH. Fifty-year study of lung and bladder cancer mortality in Chile related to arsenic in drinking water. Journal of the National Cancer Institute 2007;99(12):920-928. Meharg AA, Williams PN, Adomako E, Lawgali YY, Deacon C, Villada A, Cambell RCJ, Sun G, Zhu YG, Feldmann J, Raab A, Zhao FJ, Islam R, Hossain S, Yanai J. Geographical variation in total and inorganic arsenic content of polished (white) rice. Environmental Science & Technology 2009;43(5):1612-1617. Meharg AA, Zhao FJ. Arsenic & rice. 1st ed. Dordrecht, Netherlands: Springer; 2012. Mihucz V, Tatár E, Virág I, Zang C, Jao Y, Záray G. Arsenic removal from rice by washing and cooking with water. Food Chemistry 2007;105(4):1718-1725. Mondal D, Polya D. Rice is a major exposure route for arsenic in Chakdaha block, Nadia district, West Bengal, India: A probabilistic risk assessment. Applied Geochemistry 2008;23(11):2987-2998. Mood AM, Graybill FA, Boes DC. Introduction to the theory of statistics. 3rd ed. New York: McGraw Hill; 1974. Munoz-Olivas R, Sanz E, Camara C, Sengupta MK, Ahamed S. Arsenic speciation in rice, straw, soil, hair and nails samples from the arsenic-affected areas of middle and lower Ganga plain. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering 2007;42(12):1695-1705. NFHPC. China food safety national standard for maximum levels of contaminants in foods. National health and family planning of people’s republic of china, Beijing: Food Regulatory Team; 2012 p. 8-9. NRC. Arsenic in drinking water: update to 1999 arsenic in drinking water report. National Research Council of the National Academies. Washington, DC, 2001. NRC. Critical aspects of EPA’s IRIS assessment of inorganic arsenic: interim report. National Research Council of the National Academies. Washington, DC,2013. Narukawa T, Chiba K. Heat-assisted aqueous extraction of rice flour for arsenic speciation analysis. Journal of Agricultural and Food Chemistry 2010;58(14):8183-8188. Narukawa T, Inagaki K, Kuroiwa T, Chiba K. The extraction and speciation of arsenic in rice flour by HPLC-ICP-MS. Talanta 2008;77(1):427-432. Nookabkaew S, Rangkadilok N, Mahidol C, Promsuk G, Satayavivad J. Determination of arsenic species in rice from Thailand and other Asian countries using simple extraction and HPLC-ICP-MS analysis. Journal of Agricultural and Food Chemistry 2013;61(28):6991-6998. Oguri T, Yoshinaga J, Tao H, Nakazato T. Daily intake of inorganic arsenic and some organic arsenic species of Japanese subjects. Food and Chemical Toxicology 2012;50(8):2663-2667. Phan K, Phan S, Heng S, Huoy L, Kim K. Assessing arsenic intake from groundwater and rice by residents in Prey Veng province, Cambodia. Environmental Pollution 2014;185:84-89. Raab A, Baskaran C, Feldmann J, Meharg AA. Cooking rice in a high water to rice ratio reduces inorganic arsenic content. Journal of Environmental Monitoring 2009;11(1):41-44. Rahman MA, Hasegawa H, Rahman MM, Mazid Miah MA, Tasmin A. Arsenic accumulation in rice (Oryza sativa L.): Human exposure through food chain. Ecotoxicology and Environmental Safety 2008;69(2):317-324. Rahman MA, Rahman I, Hasegawa H. Cooking: effects on dietary exposure to arsenic from rice and vegetables. Encyclopedia of Environmental Health. 2011a;828-833. Rahman MA, Hasegawa H. High levels of inorganic arsenic in rice in areas where arsenic-contaminated water is used for irrigation and cooking. Science of The Total Environment. 2011b;409(22):4645-4655. Schoof RA, Yost LJ, Crecelius E, Irgolic K, Goessler W, Guo HR, Greene H. Dietary arsenic intake in Taiwanese districts with elevated arsenic in drinking water. Human and Ecological Risk Assessment 1998;4(1):117-135. Sengupta MK, Hossain MA, Mukherjee A, Ahamed S, Das B, Nayak B, Pal A, Chakraborti D. Arsenic burden of cooked rice: Traditional and modern methods. Food and Chemical Toxicology 2006;44(11):1823-1829. Signes A, Mitra K, Burló F, Carbonell-Barrachina AA. Effect of cooking method and rice type on arsenic concentration in cooked rice and the estimation of arsenic dietary intake in a rural village in West Bengal, India. Food Additives & Contaminants: Part A 2008;25(11):1345-1352. Smith NM, Lee R, Heitkemper DT, DeNicola Cafferky K, Haque A, Henderson AK. Inorganic arsenic in cooked rice and vegetables from Bangladeshi households. Science of The Total Environment 2006;370(2-3):294-301. Steinmaus C, Ferreccio C, Yuan Y, Acevedo J, Gonzalez F, Perez L, Cortés S, Balmes JR, Liaw J, Smith AH. Elevated lung cancer in younger adults and low concentrations of arsenic in water. American Journal of Epidemiology 2014;180(11):1082-1087. Styblo M, Del Razo LM, Vega L, Germolec DR, LeCluyse EL, Hamilton GA, Reed W, Wang C, Cullen WR, Thomas DJ. Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells. Archives of Toxicology 2000;74(6):289-299. Tseng C, Chong C, Chen C, Tai T. Dose-response relationship between peripheral vascular disease and ingested inorganic arsenic among residents in blackfoot disease endemic villages in Taiwan Atherosclerosis. 1996;120(1-2):125-133. US EPA. Arsenic, inorganic, U.S. Environmental Protection Agency, CASRN 7440-38-2. 1988 p. 14. US FDA. Analytical results from inorganic arsenic in rice and rice products sampling September 2013. U.S. Food and Drug Administration. 2013a. Available at https://www.fda.gov/downloads/food/foodborneillnesscontaminants/metals/ucm352467.pdf US FDA. Guidance for Industry Arsenic in Apple Juice: Action Level. U.S. Food and Drug Administration. 2013b. Available at https://www.fda.gov/downloads/Food/GuidanceRegulation/GuidanceDocumentsRegulatoryInformation/ChemicalContaminantsMetalsNaturalToxinsPesticides/UCM360048.pdf US FDA. Analytical results from inorganic arsenic in rice cereals for infants, non-rice infant cereal and other foods commonly eaten by infants and toddlers. U.S. Food and Drug Administration. 2016a. Available at https://www.fda.gov/food/foodborneillnesscontaminants/metals/ucm319870.htm US FDA. Arsenic in rice and rice products risk assessment report. U.S. Food and Drug Administration. 2016b. Available at http://www.fda.gov/Food/FoodScienceResearch/RiskSafetyAssessment/default.htm. Williams PN, Lei M, Sun G, Huang Q, Lu Y, Deacon C, Andrew A, Meharg, Zhu YG. Occurrence and partitioning of cadmium, arsenic and lead in mine impacted paddy Rice: Hunan, China. Environmental Science & Technology 2009;43(3):637-642. Williams PN, Price AH, Raab A, Hossain SA, Feldmann J, Meharg AA. Variation in arsenic speciation and concentration in paddy rice related to dietary exposure. Environmental Science & Technology 2005;39(15):5531-5540. Wright RO, Baccarelli A. Metals and neurotoxicology. The Journal of Nutrition 2007;137:2809–2813. Xue J, Zartarian V, Wang S, Liu S, Georgopoulos P. Probabilistic modeling of dietary arsenic exposure and dose and evaluation with 2003—2004 NHANES data. Environmental Health Perspectives 2009;118(3):345-350. Zavala YJ, Duxbury J. Arsenic in rice: I. Estimating normal levels of total arsenic in rice grain. Environmental Science & Technology 2008a;42(10):3856-3860. Zavala YJ, Gerads R, Gorleyok H, Duxbury JM. Arsenic in rice: II. Arsenic speciation in USA grain and implications for human health. Environmental Science & Technology 2008b;42(10):3861-3866. Zhao FJ, McGrath SP, Meharg AA. Arsenic as a food chain contaminant: Mechanisms of plant uptake and metabolism and mitigation strategies. Annual Review of Plant Biology 2010;61(1):535-559. Zhu YG, Sun GX, Lei M, Teng M, Liu YX, Chen NC, Wang LH, Carey AM, Deacon C, Raab A, Meharg AA,Williams PN. High percentage inorganic arsenic content of mining impacted and nonimpacted Chinese rice. Environmental Science & Technology. 2008b;42(13):5008-5013. Zhu YG, Williams PN, Meharg AA. Exposure to inorganic arsenic from rice: A global health issue? Environmental Pollution 2008a;154(2):169-171. 行政院環境保護署:健康風險評估技術規範。行政院環境保護署,台北,2011 p. 38-41。 行政院衛生署:行政院公報衛署食字第六九○二七九號。行政院衛生署,台北,2013。 許正一:土壤重金屬知多少。科學發展2011;(468):54-59。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67229 | - |
dc.description.abstract | 食米長久以來為亞洲地區之主食。就目前文獻所知,食米中之砷物種主要為三價砷(As(III))、五價砷(As(V))、單甲基砷酸(MMA)和雙甲基砷酸(DMA)。眾多文獻指出,無機砷對人體的毒性較有機砷高,且砷被國際癌症研究署(IARC)歸類為第一級致癌物質,可能導致人體皮膚、肺臟、肝臟、腎臟、膀胱等部位癌症,也可能造成非致癌的健康效應,例如心血管疾病、糖尿病,影響嬰幼兒的神經發育等。目前國內法規只針對食米中重金屬鎘、汞、鉛設立管制標準,卻未有針對砷的規範。因此本研究欲經由健康風險之角度進行國人砷暴露量與所承受健康風險之探討,作為未來食米砷管制標準制定的參考。
本研究採用本實驗室在2011年分析全臺各地區食米之重金屬濃度資料,利用蒙地卡羅方法模擬食米之無機砷濃度分布,並以區間估計方法進行健康風險評估,探討國人攝食食米暴露無機砷之暴露量,並比較國家攝食資料庫中食米與熟飯的攝食量資料對人體砷暴露估計的影響。本研究取得之106筆食米(白米)無機砷濃度資料,經由蒙地卡羅方法模擬檢定判定為對數常態(log normal)分布,再利用風險評估區間估計方法計算國人攝食食米之無機砷暴露量與健康風險值。另假定食米之無機砷管制標準分別為0.25、0.20、0.15、0.10 ppm的情況下,探討國人攝食食米之無機砷暴露量與健康風險值的變化。 本研究分析結果顯示,國人攝食食米之無機砷暴露量為:每人每日每公斤體重1.41x10-4 mg/kg-day、男性人口每人每日每公斤體重1.77x10-4 mg/kg-day、女性人口每人每日每公斤體重1.36x10-4 mg/kg-day。致癌風險部分,全人口為2.13x10-4、男性人口2.66x10-4、女性人口2.04x10-4。危害商數部分,全人口為0.472、男性人口0.591、女性人口0.454。管制標準探討的部分,若將食米之無機砷標準分別設立在0.25、0.20、0.15、0.10 ppm,以目前情況來看,分別有0.07、1.12、14.5、74.8 %的食米之砷濃度會超過標準,而若食米之砷濃度分別降至這些不同的標準值,能將國人攝食食米之無機砷暴露量分別降低0.43、0.85、5.97、25.7 %。將食米之無機砷管制標準設在0.15 ppm時能有效將暴露量降低約6 %,此結果與FAO/WHO在2016年制定糙米之無機砷管制標準為0.35 ppm時所能降低之無機砷暴露量較為相近。 以臺灣目前食米之砷濃度分布情形來看,以食米為主食的國人攝食食米所承受之無機砷暴露量與健康風險仍需進一步評估與重視。在健康風險的部分,以危害商數管制標準為1的情形下約有22.6 %的人會超過此管制風險值而面臨非致癌之健康效應,而在致癌風險管制標準為1x10-4的情形下約有77.2 %會超過此管制風險值而面臨致癌之健康效應。 臺灣屬飲食文化以食米為主食的亞洲國家,相較於普遍攝食麥類的西方國家,國人食米之攝食量高。單從制定管制標準改善食米無機砷濃度著手,無法有效降低國人攝食食米可能承受的無機砷暴露量與風險值。因此若直接引用西方國家之管制方法,而未考量國人的飲食習慣即制定嚴格的管制標準,可能導致實際上難以實行。未來在制定管制標準時,仍需考量實際應用層面,輔以經濟與政治面向探討,並採用成本效益分析方法,以評估建立最適宜的管制情形。 | zh_TW |
dc.description.abstract | Rice is the staple food in Asia. Previous studies have shown that the major arsenic species in rice grain include arsenite(As(III)), arsenate(As(V)), monomethyarsonic acid (MMA), and dimethylarsinic acid(DMA). In general, inorganic arsenic species are more toxic than organic arsenic species. Arsenic is also classified as class I--carcinogenic to humans by International Agency for Research on Cancer. Arsenic can cause adverse health impacts such as skin lesions, lung cancers, liver and kidney cancers, bladder cancers. Regarding the non-cancer diseases, arsenic can cause cardiovascular diseases, diabetes, and influence the neuro developments in children. Presently, there are regulations on cadmium, mercury, and lead in rice in Taiwan, but there is still no regulation on arsenic in rice. Therefore, the objective of this study was to assess the arsenic exposure and the possible resulted health risk posed through rice intake for Taiwanese population in the health risk assessment framework, and this might help in forming the regulation on arsenic in rice in the future.
We adopted the rice inorganic arsenic data obtained by our laboratory in 2011 for various districts of Taiwan. With the obtained data, we used Monte Carlo distribution fitting to fit the inorganic arsenic concentration data as a log normal distribution, calculate inorganic arsenic lifetime average daily dose(LADD) value and conduct a probabilistic risk assessment to figure out the possible Hazard Quotients(HQ) and cancer risk. We also set various maximum limit proposals on inorganic arsenic level in rice and monitored the resulted differences in arsenic exposure doses and the health risk, respectively, under various maximum limit proposals. The LADDs results are as follows, 1.41x10-4 mg/kg-day for general population, 1.77x10-4 mg/kg-day for male and 1.36x10-4 mg/kg-day for female. The cancer risks are 2.13x10-4 for general population, 2.66x10-4 for male and 2.04x10-4 for female. In addition, the Hazard Quotients(HQ) are 0.472 for general population, 0.591 for male, and 0.454 for female. Regarding the maximum limit proposals, we set various proposals at 0.25, 0.20, 0.15, 0.10 ppm for arsenic level in rice. Under these circumstances, we need to disqualify 0.07, 1.12, 14.5, 74.8 % of currently produced rice and accordingly cut down people’s inorganic arsenic exposure dose by 0.43, 0.85, 5.97, 25.7 %, respectively. We concluded that setting regulation at 0.15 ppm for arsenic level in rice might reduce 6 % of inorganic arsenic exposure dosage for people in Taiwan, and this value is similar to that FAO/WHO measured in 2016 while they were setting inorganic arsenic regulation on brown rice at 0.35 ppm. From the present inorganic arsenic levels in rice we have assessed, the health risk assessment results have indicated that the intake of rice for Taiwanese people has posed a health risk which should not be ignored. Regarding the health risk, there were 22.6 % of people facing non-cancer health risk considering the acceptable hazard quotient 1, and there were 77.2 % people facing cancer health risk considering the acceptable cancer risk 1x10-4. Taiwan, as part of Asia, has been consuming rice as staple food for decades. Compared to western countries, people in Taiwan consume a greater amount of rice. Therefore, cutting down on the arsenic exposure by setting regulation on arsenic levels poses little significance. Apart from setting the regulation on arsenic levels in rice, we should ponder on the economic and politics aspects, and also consider about Taiwanese people’s diet habits, in order to foster the most appropriate regulation on arsenic level in rice. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T01:24:21Z (GMT). No. of bitstreams: 1 ntu-106-R04841015-1.pdf: 1581870 bytes, checksum: e63abd10d9ca9e6acca12f4d9347fc99 (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 致謝 I
摘要 II Abstract IV 目錄 i 圖目錄 iv 表目錄 v 第一章 前言 1 1.1研究背景 1 1.2研究目的 2 1.3研究架構 2 第二章 文獻探討 4 2.1砷之概述 4 2.2有機砷與無機砷 4 2.3砷之健康效應 5 2.4砷在環境中之背景值 6 2.5食米與熟飯之無機砷濃度 7 2.6食物中的砷 8 2.6.1美國 9 2.6.2糧農組織/世界衛生組織 12 2.6.3歐洲 15 2.6.4日本 17 2.6.5中國 18 2.6.6臺灣 20 2.6.7各國家或組織食米砷管制標準制定 22 2.7風險評估之蒙地卡羅模擬方法(Monte-Carlo simulation) 24 第三章 研究方法 26 3.1研究方法 26 3.2食米砷濃度資料 26 3.2.1採樣方法 27 3.2.2樣本處理 28 3.2.3樣本分析 29 3.3食米砷暴露量與健康風險值計算 29 3.3.1國人食米攝食量與體重資料 29 3.3.2國人攝食食米之砷暴露量評估 30 3.3.3風險特徵描述 31 第四章 研究結果 33 4.1臺灣食米之無機砷濃度分布情形 33 4.2臺灣人口攝食食米之無機砷暴露情形 33 4.3臺灣人口攝食食米暴露無機砷之非致癌與致癌健康風險評估 35 4.4食米與熟飯之無機砷濃度、食米烹煮成熟飯之無機砷暴露量差異 41 4.5臺灣食米之無機砷濃度管制標準探討 42 第五章 討論 46 5.1食米之無機砷濃度探討 46 5.2食米無機砷濃度分布與無機砷暴露量分布之擬合模式探討 48 5.3以食米估計之無機砷暴露量探討 48 5.4以熟飯估計之無機砷暴露量探討 50 5.5食米無機砷濃度之管制標準探討 51 5.6對農糧單位設立標準之建議 52 5.7本研究之限制與不確定性 54 第六章 結論與建議 55 參考文獻 56 附錄 63 | |
dc.language.iso | zh-TW | |
dc.title | 臺灣食用稻米砷暴露管制標準探討 | zh_TW |
dc.title | Study on the Regulation of Arsenic in Rice in Taiwan | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 毛義方(I-Fang Mao),袁子軒(Tzu-Hsuen Yuan) | |
dc.subject.keyword | 食米,無機砷,健康風險評估,管制標準, | zh_TW |
dc.subject.keyword | rice,inorganic arsenic,health risk assessment,regulation, | en |
dc.relation.page | 64 | |
dc.identifier.doi | 10.6342/NTU201702814 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-08-09 | |
dc.contributor.author-college | 公共衛生學院 | zh_TW |
dc.contributor.author-dept | 職業醫學與工業衛生研究所 | zh_TW |
顯示於系所單位: | 職業醫學與工業衛生研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 1.54 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。