請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67158完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 田蕙芬 | |
| dc.contributor.author | Chi-Yuan Yao | en |
| dc.contributor.author | 姚啟元 | zh_TW |
| dc.date.accessioned | 2021-06-17T01:21:46Z | - |
| dc.date.available | 2022-09-12 | |
| dc.date.copyright | 2017-09-12 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-10 | |
| dc.identifier.citation | Adès, L., R. Itzykson, and P. Fenaux. 2014. Myelodysplastic syndromes. Lancet 383:2239-2252.
Alharbi, R.A., R. Pettengell, H.S. Pandha, and R. Morgan. 2013. The role of HOX genes in normal hematopoiesis and acute leukemia. Leukemia 27:1000-1008. Alvarez-Dominguez, J.R., W. Hu, A.A. Gromatzky, and H.F. Lodish. 2014. Long noncoding RNAs during normal and malignant hematopoiesis. Int J Hematol 99:531-541. Bartonicek, N., J.L. Maag, and M.E. Dinger. 2016. Long noncoding RNAs in cancer: mechanisms of action and technological advancements. Mol Cancer 15:43. Bejar, R. 2014. Clinical and genetic predictors of prognosis in myelodysplastic syndromes. Haematologica 99:956-964. Bejar, R., and D.P. Steensma. 2014. Recent developments in myelodysplastic syndromes. Blood 124:2793-2803. Bernasconi, P., E.P. Alessandrino, M. Boni, M. Bonfichi, E. Morra, M. Lazzarino, C. Campagnoli, and C. Astori. 1994. Karyotype in myelodysplastic syndromes: relations to morphology, clinical evolution, and survival. Am J Hematol 46:270-277. Cazzola, M., M.G. Della Porta, and L. Malcovati. 2013. The genetic basis of myelodysplasia and its clinical relevance. Blood 122:4021-4034. Chen, L., W. Wang, L. Cao, Z. Li, and X. Wang. 2016. Long Non-Coding RNA CCAT1 Acts as a Competing Endogenous RNA to Regulate Cell Growth and Differentiation in Acute Myeloid Leukemia. Mol Cells 39:330-336. Chen, T., H. Hou, W. Chou, J. Tang, Y. Kuo, C. Chen, M. Tseng, C. Huang, Y. Lai, Y. Chiang, F. Lee, M. Liu, C. Liu, C. Liu, M. Yao, S. Huang, B. Ko, S. Hsu, S. Wu, W. Tsay, Y. Chen, and H. Tien. 2014a. Dynamics of ASXL1 mutation and other associated genetic alterations during disease progression in patients with primary myelodysplastic syndrome. Blood Cancer J 4:e177. Chen, T.C., H.A. Hou, W.C. Chou, J.L. Tang, Y.Y. Kuo, C.Y. Chen, M.H. Tseng, C.F. Huang, Y.J. Lai, Y.C. Chiang, F.Y. Lee, M.C. Liu, C.W. Liu, C.Y. Liu, M. Yao, S.Y. Huang, B.S. Ko, S.C. Hsu, S.J. Wu, W. Tsay, Y.C. Chen, and H.F. Tien. 2014b. Dynamics of ASXL1 mutation and other associated genetic alterations during disease progression in patients with primary myelodysplastic syndrome. Blood Cancer J 4:e177. Chou, W.C., S.C. Chou, C.Y. Liu, C.Y. Chen, H.A. Hou, Y.Y. Kuo, M.C. Lee, B.S. Ko, J.L. Tang, M. Yao, W. Tsay, S.J. Wu, S.Y. Huang, S.C. Hsu, Y.C. Chen, Y.C. Chang, Y.Y. Kuo, K.T. Kuo, F.Y. Lee, M.C. Liu, C.W. Liu, M.H. Tseng, C.F. Huang, and H.F. Tien. 2011. TET2 mutation is an unfavorable prognostic factor in acute myeloid leukemia patients with intermediate-risk cytogenetics. Blood 118:3803-3810. Chou, W.C., H.A. Hou, C.Y. Chen, J.L. Tang, M. Yao, W. Tsay, B.S. Ko, S.J. Wu, S.Y. Huang, S.C. Hsu, Y.C. Chen, Y.N. Huang, Y.C. Chang, F.Y. Lee, M.C. Liu, C.W. Liu, M.H. Tseng, C.F. Huang, and H.F. Tien. 2010. Distinct clinical and biologic characteristics in adult acute myeloid leukemia bearing the isocitrate dehydrogenase 1 mutation. Blood 115:2749-2754. De Braekeleer, E., N. Douet-Guilbert, A. Basinko, M.J. Le Bris, F. Morel, and M. De Braekeleer. 2014. Hox gene dysregulation in acute myeloid leukemia. Future Oncol 10:475-495. Dostalova Merkerova, M., Z. Krejcik, H. Votavova, M. Belickova, A. Vasikova, and J. Cermak. 2011. Distinctive microRNA expression profiles in CD34+ bone marrow cells from patients with myelodysplastic syndrome. Eur J Hum Genet 19:313-319. Epling-Burnette, P.K., F. Bai, J.S. Painter, D.E. Rollison, H.R. Salih, M. Krusch, J. Zou, E. Ku, B. Zhong, D. Boulware, L. Moscinski, S. Wei, J.Y. Djeu, and A.F. List. 2007a. Reduced natural killer (NK) function associated with high-risk myelodysplastic syndrome (MDS) and reduced expression of activating NK receptors. Blood 109:4816-4824. Epling-Burnette, P.K., and A.F. List. 2009. Advancements in the molecular pathogenesis of myelodysplastic syndrome. Curr Opin Hematol 16:70-76. Epling-Burnette, P.K., J.S. Painter, D.E. Rollison, E. Ku, D. Vendron, R. Widen, D. Boulware, J.X. Zou, F. Bai, and A.F. List. 2007b. Prevalence and clinical association of clonal T-cell expansions in Myelodysplastic Syndrome. Leukemia 21:659-667. Ernst, T., A.J. Chase, J. Score, C.E. Hidalgo-Curtis, C. Bryant, A.V. Jones, K. Waghorn, K. Zoi, F.M. Ross, A. Reiter, A. Hochhaus, H.G. Drexler, A. Duncombe, F. Cervantes, D. Oscier, J. Boultwood, F.H. Grand, and N.C. Cross. 2010. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat Genet 42:722-726. Fang, J., M. Varney, and D.T. Starczynowski. 2012. Implication of microRNAs in the Pathogenesis of MDS. Curr Pharm Des 18:3170-3179. Fang, Y., and M.J. Fullwood. 2016. Roles, Functions, and Mechanisms of Long Non-coding RNAs in Cancer. Genomics Proteomics Bioinformatics 14:42-54. Fatica, A., and I. Bozzoni. 2014. Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet 15:7-21. Fenaux, P., and L. Ades. 2013. How we treat lower-risk myelodysplastic syndromes. Blood 121:4280-4286. Fuller, J.F., J. McAdara, Y. Yaron, M. Sakaguchi, J.K. Fraser, and J.C. Gasson. 1999. Characterization of HOX gene expression during myelopoiesis: role of HOX A5 in lineage commitment and maturation. Blood 93:3391-3400. Gangat, N., M.M. Patnaik, and A. Tefferi. 2016. Myelodysplastic syndromes: Contemporary review and how we treat. Am J Hematol 91:76-89. Garzon, R., S. Volinia, D. Papaioannou, D. Nicolet, J. Kohlschmidt, P.S. Yan, K. Mrozek, D. Bucci, A.J. Carroll, M.R. Baer, M. Wetzler, T.H. Carter, B.L. Powell, J.E. Kolitz, J.O. Moore, A.K. Eisfeld, J.S. Blachly, W. Blum, M.A. Caligiuri, R.M. Stone, G. Marcucci, C.M. Croce, J.C. Byrd, and C.D. Bloomfield. 2014. Expression and prognostic impact of lncRNAs in acute myeloid leukemia. Proc Natl Acad Sci U S A 111:18679-18684. Gerstung, M., A. Pellagatti, L. Malcovati, A. Giagounidis, M.G. Porta, M. Jadersten, H. Dolatshad, A. Verma, N.C. Cross, P. Vyas, S. Killick, E. Hellstrom-Lindberg, M. Cazzola, E. Papaemmanuil, P.J. Campbell, and J. Boultwood. 2015. Combining gene mutation with gene expression data improves outcome prediction in myelodysplastic syndromes. Nat Commun 6:5901. Greenberg, P., C. Cox, M.M. LeBeau, P. Fenaux, P. Morel, G. Sanz, M. Sanz, T. Vallespi, T. Hamblin, D. Oscier, K. Ohyashiki, K. Toyama, C. Aul, G. Mufti, and J. Bennett. 1997. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood 89:2079-2088. Greenberg, P.L., H. Tuechler, J. Schanz, G. Sanz, G. Garcia-Manero, F. Sole, J.M. Bennett, D. Bowen, P. Fenaux, F. Dreyfus, H. Kantarjian, A. Kuendgen, A. Levis, L. Malcovati, M. Cazzola, J. Cermak, C. Fonatsch, M.M. Le Beau, M.L. Slovak, O. Krieger, M. Luebbert, J. Maciejewski, S.M. Magalhaes, Y. Miyazaki, M. Pfeilstocker, M. Sekeres, W.R. Sperr, R. Stauder, S. Tauro, P. Valent, T. Vallespi, A.A. van de Loosdrecht, U. Germing, and D. Haase. 2012. Revised international prognostic scoring system for myelodysplastic syndromes. Blood 120:2454-2465. Haase, D., U. Germing, J. Schanz, M. Pfeilstocker, T. Nosslinger, B. Hildebrandt, A. Kundgen, M. Lubbert, R. Kunzmann, A.A. Giagounidis, C. Aul, L. Trumper, O. Krieger, R. Stauder, T.H. Muller, F. Wimazal, P. Valent, C. Fonatsch, and C. Steidl. 2007. New insights into the prognostic impact of the karyotype in MDS and correlation with subtypes: evidence from a core dataset of 2124 patients. Blood 110:4385-4395. Harrow, J., F. Denoeud, A. Frankish, A. Reymond, C.K. Chen, J. Chrast, J. Lagarde, J.G. Gilbert, R. Storey, D. Swarbreck, C. Rossier, C. Ucla, T. Hubbard, S.E. Antonarakis, and R. Guigo. 2006. GENCODE: producing a reference annotation for ENCODE. Genome Biol 7 Suppl 1:S4.1-9. Hejazi, M., A.R. Manser, J. Fröbel, A. Kündgen, X. Zhao, K. Schönberg, U. Germing, R. Haas, N. Gattermann, and M. Uhrberg. 2015. Impaired cytotoxicity associated with defective natural killer cell differentiation in myelodysplastic syndromes. Haematologica 100:643-652. Heuston, E., K. Lemon, and R. Arceci. 2011. The beginning of the road for non-coding RNAs in normal hematopoiesis and hematologic malignancies. Frontiers in Genetics 2: Hirano, T., R. Yoshikawa, H. Harada, Y. Harada, A. Ishida, and T. Yamazaki. 2015. Long noncoding RNA, CCDC26, controls myeloid leukemia cell growth through regulation of KIT expression. Mol Cancer 14:90. Hou, H.A., W.C. Chou, Y.Y. Kuo, C.Y. Liu, L.I. Lin, M.H. Tseng, Y.C. Chiang, M.C. Liu, C.W. Liu, J.L. Tang, M. Yao, C.C. Li, S.Y. Huang, B.S. Ko, S.C. Hsu, C.Y. Chen, C.T. Lin, S.J. Wu, W. Tsay, Y.C. Chen, and H.F. Tien. 2015. TP53 mutations in de novo acute myeloid leukemia patients: longitudinal follow-ups show the mutation is stable during disease evolution. Blood Cancer J 5:e331. Hou, H.A., T.C. Huang, L.I. Lin, C.Y. Liu, C.Y. Chen, W.C. Chou, J.L. Tang, M.H. Tseng, C.F. Huang, Y.C. Chiang, F.Y. Lee, M.C. Liu, M. Yao, S.Y. Huang, B.S. Ko, S.C. Hsu, S.J. Wu, W. Tsay, Y.C. Chen, and H.F. Tien. 2010. WT1 mutation in 470 adult patients with acute myeloid leukemia: stability during disease evolution and implication of its incorporation into a survival scoring system. Blood 115:5222-5231. Hou, H.A., Y.Y. Kuo, C.Y. Liu, W.C. Chou, M.C. Lee, C.Y. Chen, L.I. Lin, M.H. Tseng, C.F. Huang, Y.C. Chiang, F.Y. Lee, M.C. Liu, C.W. Liu, J.L. Tang, M. Yao, S.Y. Huang, B.S. Ko, S.C. Hsu, S.J. Wu, W. Tsay, Y.C. Chen, and H.F. Tien. 2012. DNMT3A mutations in acute myeloid leukemia: stability during disease evolution and clinical implications. Blood 119:559-568. Hou, H.A., C.Y. Liu, Y.Y. Kuo, W.C. Chou, C.H. Tsai, C.C. Lin, L.I. Lin, M.H. Tseng, Y.C. Chiang, M.C. Liu, C.W. Liu, J.L. Tang, M. Yao, C.C. Li, S.Y. Huang, B.S. Ko, S.C. Hsu, C.Y. Chen, C.T. Lin, S.J. Wu, W. Tsay, and H.F. Tien. 2016. Splicing factor mutations predict poor prognosis in patients with de novo acute myeloid leukemia. Oncotarget 7:9084-9101. Huang da, W., B.T. Sherman, and R.A. Lempicki. 2009a. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37:1-13. Huang da, W., B.T. Sherman, and R.A. Lempicki. 2009b. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44-57. Huarte, M. 2015. The emerging role of lncRNAs in cancer. Nat Med 21:1253-1261. Hughes, J.M., I. Legnini, B. Salvatori, S. Masciarelli, M. Marchioni, F. Fazi, M. Morlando, I. Bozzoni, and A. Fatica. 2015. C/EBPα-p30 protein induces expression of the oncogenic long non-coding RNA UCA1 in acute myeloid leukemia. Oncotarget 6:18534-18544. Iyer, M.K., Y.S. Niknafs, R. Malik, U. Singhal, A. Sahu, Y. Hosono, T.R. Barrette, J.R. Prensner, J.R. Evans, S. Zhao, A. Poliakov, X. Cao, S.M. Dhanasekaran, Y.M. Wu, D.R. Robinson, D.G. Beer, F.Y. Feng, H.K. Iyer, and A.M. Chinnaiyan. 2015. The landscape of long noncoding RNAs in the human transcriptome. Nat Genet 47:199-208. Kiladjian, J.J., E. Bourgeois, I. Lobe, T. Braun, G. Visentin, J.H. Bourhis, P. Fenaux, S. Chouaib, and A. Caignard. 2006. Cytolytic function and survival of natural killer cells are severely altered in myelodysplastic syndromes. Leukemia 20:463-470. Kordasti, S.Y., W. Ingram, J. Hayden, D. Darling, L. Barber, B. Afzali, G. Lombardi, M.W. Wlodarski, J.P. Maciejewski, F. Farzaneh, and G.J. Mufti. 2007. CD4+CD25high Foxp3+ regulatory T cells in myelodysplastic syndrome (MDS). Blood 110:847-850. Kotsianidis, I., I. Bouchliou, E. Nakou, E. Spanoudakis, D. Margaritis, A.V. Christophoridou, A. Anastasiades, C. Tsigalou, G. Bourikas, A. Karadimitris, and C. Tsatalas. 2009. Kinetics, function and bone marrow trafficking of CD4+CD25+FOXP3+ regulatory T cells in myelodysplastic syndromes (MDS). Leukemia 23:510-518. Kramer, A., J. Green, J. Pollard, Jr., and S. Tugendreich. 2014. Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics 30:523-530. Kung, J.T., D. Colognori, and J.T. Lee. 2013. Long noncoding RNAs: past, present, and future. Genetics 193:651-669. Liao, R., Y. Xu, M. Chen, X. Chen, X. Zhan, and J. Sun. 2013. Molecular mechanism of microRNA involvement in genesis of myelodysplastic syndrome and its transformation to acute myeloid leukemia. Hematology 18:191-197. Lin, C.C., H.A. Hou, W.C. Chou, Y.Y. Kuo, C.Y. Liu, C.Y. Chen, Y.J. Lai, M.H. Tseng, C.F. Huang, Y.C. Chiang, F.Y. Lee, M.C. Liu, C.W. Liu, J.L. Tang, M. Yao, S.Y. Huang, B.S. Ko, S.J. Wu, W. Tsay, Y.C. Chen, and H.F. Tien. 2014a. IDH mutations are closely associated with mutations of DNMT3A, ASXL1 and SRSF2 in patients with myelodysplastic syndromes and are stable during disease evolution. Am J Hematol 89:137-144. Lin, C.C., H.A. Hou, W.C. Chou, Y.Y. Kuo, S.J. Wu, C.Y. Liu, C.Y. Chen, M.H. Tseng, C.F. Huang, F.Y. Lee, M.C. Liu, C.W. Liu, J.L. Tang, M. Yao, S.Y. Huang, S.C. Hsu, B.S. Ko, W. Tsay, Y.C. Chen, and H.F. Tien. 2014b. SF3B1 mutations in patients with myelodysplastic syndromes: the mutation is stable during disease evolution. Am J Hematol 89:E109-115. Luo, M., M. Jeong, D. Sun, H.J. Park, B.A. Rodriguez, Z. Xia, L. Yang, X. Zhang, K. Sheng, G.J. Darlington, W. Li, and M.A. Goodell. 2015. Long non-coding RNAs control hematopoietic stem cell function. Cell Stem Cell 16:426-438. McCarty, G., and D.M. Loeb. 2015. Hypoxia-sensitive epigenetic regulation of an antisense-oriented lncRNA controls WT1 expression in myeloid leukemia cells. PLoS One 10:e0119837. Melenhorst, J.J., R. Eniafe, D. Follmann, R. Nakamura, M. Kirby, and A.J. Barrett. 2002. Molecular and flow cytometric characterization of the CD4 and CD8 T-cell repertoire in patients with myelodysplastic syndrome. Br J Haematol 119:97-105. Mercer, T.R., M.E. Dinger, and J.S. Mattick. 2009. Long non-coding RNAs: insights into functions. Nat Rev Genet 10:155-159. Meseure, D., K. Drak Alsibai, A. Nicolas, I. Bieche, and A. Morillon. 2015. Long Noncoding RNAs as New Architects in Cancer Epigenetics, Prognostic Biomarkers, and Potential Therapeutic Targets. Biomed Res Int 2015:320214. Mills, K.I., A. Kohlmann, P.M. Williams, L. Wieczorek, W.M. Liu, R. Li, W. Wei, D.T. Bowen, H. Loeffler, J.M. Hernandez, W.K. Hofmann, and T. Haferlach. 2009. Microarray-based classifiers and prognosis models identify subgroups with distinct clinical outcomes and high risk of AML transformation of myelodysplastic syndrome. Blood 114:1063-1072. Morel, P., M. Hebbar, J.L. Lai, A. Duhamel, C. Preudhomme, E. Wattel, F. Bauters, and P. Fenaux. 1993. Cytogenetic analysis has strong independent prognostic value in de novo myelodysplastic syndromes and can be incorporated in a new scoring system: a report on 408 cases. Leukemia 7:1315-1323. Morlando, M., M. Ballarino, and A. Fatica. 2015. Long non-coding RNAs: new players in hematopoiesis and leukemia. Frontiers in Medicine 2: Panda, A.C., J.L. Martindale, and M. Gorospe. 2016. Affinity Pulldown of Biotinylated RNA for Detection of Protein-RNA Complexes. Bio-protocol 6:e2062. Papaemmanuil, E., M. Gerstung, L. Malcovati, S. Tauro, G. Gundem, P. Van Loo, C.J. Yoon, P. Ellis, D.C. Wedge, A. Pellagatti, A. Shlien, M.J. Groves, S.A. Forbes, K. Raine, J. Hinton, L.J. Mudie, S. McLaren, C. Hardy, C. Latimer, M.G. Della Porta, S. O'Meara, I. Ambaglio, A. Galli, A.P. Butler, G. Walldin, J.W. Teague, L. Quek, A. Sternberg, C. Gambacorti-Passerini, N.C. Cross, A.R. Green, J. Boultwood, P. Vyas, E. Hellstrom-Lindberg, D. Bowen, M. Cazzola, M.R. Stratton, and P.J. Campbell. 2013. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood 122:3616-3627. Pellagatti, A., A. Benner, K.I. Mills, M. Cazzola, A. Giagounidis, J. Perry, L. Malcovati, M.G. Della Porta, M. Jadersten, A. Verma, E.J. McDonald, S. Killick, E. Hellstrom-Lindberg, L. Bullinger, J.S. Wainscoat, and J. Boultwood. 2013. Identification of gene expression-based prognostic markers in the hematopoietic stem cells of patients with myelodysplastic syndromes. J Clin Oncol 31:3557-3564. Placke, T., K. Faber, A. Nonami, S.L. Putwain, H.R. Salih, F.H. Heidel, A. Kramer, D.E. Root, D.A. Barbie, A.V. Krivtsov, S.A. Armstrong, W.C. Hahn, B.J. Huntly, S.M. Sykes, M.D. Milsom, C. Scholl, and S. Frohling. 2014. Requirement for CDK6 in MLL-rearranged acute myeloid leukemia. Blood 124:13-23. Qi, P., X.Y. Zhou, and X. Du. 2016. Circulating long non-coding RNAs in cancer: current status and future perspectives. Mol Cancer 15:39. Rhyasen, G.W., and D.T. Starczynowski. 2012. Deregulation of microRNAs in myelodysplastic syndrome. Leukemia 26:13-22. Rinn, J.L., M. Kertesz, J.K. Wang, S.L. Squazzo, X. Xu, S.A. Brugmann, L.H. Goodnough, J.A. Helms, P.J. Farnham, E. Segal, and H.Y. Chang. 2007. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129:1311-1323. Scheicher, R., A. Hoelbl-Kovacic, F. Bellutti, A.-S. Tigan, M. Prchal-Murphy, G. Heller, C. Schneckenleithner, M. Salazar-Roa, S. Zöchbauer-Müller, J. Zuber, M. Malumbres, K. Kollmann, and V. Sexl. 2015. CDK6 as a key regulator of hematopoietic and leukemic stem cell activation. Blood 125:90-101. Schmitt, A.M., and H.Y. Chang. 2016. Long Noncoding RNAs in Cancer Pathways. Cancer Cell 29:452-463. Sekeres, M.A., and C. Cutler. 2014. How we treat higher-risk myelodysplastic syndromes. Blood 123:829-836. Shaffer, L.G., M.L. Slovak, and L.J. Campbell. 2009. ISCN(2009): An International System for Human Cytogenetic Nomenclature. Karger, Basel, Switzerland. Shiah, H.S., Y.Y. Kuo, J.L. Tang, S.Y. Huang, M. Yao, W. Tsay, Y.C. Chen, C.H. Wang, M.C. Shen, D.T. Lin, K.H. Lin, and H.F. Tien. 2002. Clinical and biological implications of partial tandem duplication of the MLL gene in acute myeloid leukemia without chromosomal abnormalities at 11q23. Leukemia 16:196-202. Simon, R., A. Lam, M.C. Li, M. Ngan, S. Menenzes, and Y. Zhao. 2007. Analysis of Gene Expression Data Using BRB-Array Tools. Cancer Inform 3:11-17. Sridhar, K., D.T. Ross, R. Tibshirani, A.J. Butte, and P.L. Greenberg. 2009. Relationship of differential gene expression profiles in CD34+ myelodysplastic syndrome marrow cells to disease subtype and progression. Blood 114:4847-4858. Stone, R.M. 2009. How I treat patients with myelodysplastic syndromes. Blood 113:6296-6303. Sun, J., W. Li, Y. Sun, D. Yu, X. Wen, H. Wang, J. Cui, G. Wang, A.R. Hoffman, and J.F. Hu. 2014. A novel antisense long noncoding RNA within the IGF1R gene locus is imprinted in hematopoietic malignancies. Nucleic Acids Res 42:9588-9601. Tang, J.L., H.A. Hou, C.Y. Chen, C.Y. Liu, W.C. Chou, M.H. Tseng, C.F. Huang, F.Y. Lee, M.C. Liu, M. Yao, S.Y. Huang, B.S. Ko, S.C. Hsu, S.J. Wu, W. Tsay, Y.C. Chen, L.I. Lin, and H.F. Tien. 2009. AML1/RUNX1 mutations in 470 adult patients with de novo acute myeloid leukemia: prognostic implication and interaction with other gene alterations. Blood 114:5352-5361. Tefferi, A., and J.W. Vardiman. 2009. Myelodysplastic Syndromes. N Engl J Med 361:1872-1885. Thol, F., S. Kade, C. Schlarmann, P. Loffeld, M. Morgan, J. Krauter, M.W. Wlodarski, B. Kolking, M. Wichmann, K. Gorlich, G. Gohring, G. Bug, O. Ottmann, C.M. Niemeyer, W.K. Hofmann, B. Schlegelberger, A. Ganser, and M. Heuser. 2012. Frequency and prognostic impact of mutations in SRSF2, U2AF1, and ZRSR2 in patients with myelodysplastic syndromes. Blood 119:3578-3584. Tien, H.F., J.H. Tang, W. Tsay, M.C. Liu, F.Y. Lee, C.H. Wang, Y.C. Chen, and M.C. Shen. 2001. Methylation of the p15(INK4B) gene in myelodysplastic syndrome: it can be detected early at diagnosis or during disease progression and is highly associated with leukaemic transformation. Br J Haematol 112:148-154. van der Linden, M.H., M. Willekes, E. van Roon, L. Seslija, P. Schneider, R. Pieters, and R.W. Stam. 2014. MLL fusion-driven activation of CDK6 potentiates proliferation in MLL-rearranged infant ALL. Cell Cycle 13:834-844. van Oostveen, J., J. Bijl, F. Raaphorst, J. Walboomers, and C. Meijer. 1999. The role of homeobox genes in normal hematopoiesis and hematological malignancies. Leukemia 13:1675-1690. Visconte, V., R.V. Tiu, and H.J. Rogers. 2014. Pathogenesis of myelodysplastic syndromes: an overview of molecular and non-molecular aspects of the disease. Blood research 49:216-227. Volders, P.J., K. Helsens, X. Wang, B. Menten, L. Martens, K. Gevaert, J. Vandesompele, and P. Mestdagh. 2013. LNCipedia: a database for annotated human lncRNA transcript sequences and structures. Nucleic Acids Res 41:D246-251. Walter, M.J., D. Shen, L. Ding, J. Shao, D.C. Koboldt, K. Chen, D.E. Larson, M.D. McLellan, D. Dooling, R. Abbott, R. Fulton, V. Magrini, H. Schmidt, J. Kalicki-Veizer, M. O'Laughlin, X. Fan, M. Grillot, S. Witowski, S. Heath, J.L. Frater, W. Eades, M. Tomasson, P. Westervelt, J.F. DiPersio, D.C. Link, E.R. Mardis, T.J. Ley, R.K. Wilson, and T.A. Graubert. 2012. Clonal architecture of secondary acute myeloid leukemia. N Engl J Med 366:1090-1098. Watts, J.K., and D.R. Corey. 2012. Gene silencing by siRNAs and antisense oligonucleotides in the laboratory and the clinic. The Journal of pathology 226:365-379. Wilusz, J.E., H. Sunwoo, and D.L. Spector. 2009. Long noncoding RNAs: functional surprises from the RNA world. Genes Dev 23:1494-1504. Wu, S., C. Zheng, S. Chen, X. Cai, Y. Shi, B. Lin, and Y. Chen. 2015. Overexpression of long non-coding RNA HOTAIR predicts a poor prognosis in patients with acute myeloid leukemia. Oncol Lett 10:2410-2414. Wu, S.J., Y.Y. Kuo, H.A. Hou, L.Y. Li, M.H. Tseng, C.F. Huang, F.Y. Lee, M.C. Liu, C.W. Liu, C.T. Lin, C.Y. Chen, W.C. Chou, M. Yao, S.Y. Huang, B.S. Ko, J.L. Tang, W. Tsay, and H.F. Tien. 2012. The clinical implication of SRSF2 mutation in patients with myelodysplastic syndrome and its stability during disease evolution. Blood 120:3106-3111. Xing, C.Y., X.Q. Hu, F.Y. Xie, Z.J. Yu, H.Y. Li, Z. Bin, J.B. Wu, L.Y. Tang, and S.M. Gao. 2015. Long non-coding RNA HOTAIR modulates c-KIT expression through sponging miR-193a in acute myeloid leukemia. FEBS Lett 589:1981-1987. Zeng, C., Y. Xu, L. Xu, X. Yu, J. Cheng, L. Yang, S. Chen, and Y. Li. 2014. Inhibition of long non-coding RNA NEAT1 impairs myeloid differentiation in acute promyelocytic leukemia cells. BMC Cancer 14:693. Zeng, C., X. Yu, J. Lai, L. Yang, S. Chen, and Y. Li. 2015. Overexpression of the long non-coding RNA PVT1 is correlated with leukemic cell proliferation in acute promyelocytic leukemia. J Hematol Oncol 8:126. Zhang, F., L. Zhang, and C. Zhang. 2016. Long noncoding RNAs and tumorigenesis: genetic associations, molecular mechanisms, and therapeutic strategies. Tumour Biol 37:163-175. Zhang, H., Z. Chen, X. Wang, Z. Huang, Z. He, and Y. Chen. 2013. Long non-coding RNA: a new player in cancer. J Hematol Oncol 6:37. Zhang, X., S.M. Weissman, and P.E. Newburger. 2014. Long intergenic non-coding RNA HOTAIRM1 regulates cell cycle progression during myeloid maturation in NB4 human promyelocytic leukemia cells. RNA Biol 11:777-787. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67158 | - |
| dc.description.abstract | Long noncoding RNAs (lncRNAs) not only participate in normal hematopoiesis but also contribute to the pathogenesis of acute leukemia. However, their clinical and prognostic relevance in myelodysplastic syndromes (MDS) remains unclear to date. In this study, we profiled the lncRNA expressions in 176 adult patients with primary MDS, and identified four lncRNAs whose expression levels were significantly associated with overall survival (OS). We then constructed a risk scoring system with the weighted sum of these four lncRNAs. Higher lncRNA scores were associated with higher marrow blast percentages, higher-risk subtypes of MDS based on both the Revised International Prognostic Scoring System (IPSS-R) and WHO classification, complex cytogenetic changes, and mutations in RUNX1, ASXL1, TP53, SRSF2 and ZRSR2, while inversely correlated with SF3B1 mutation. Patients with higher lncRNA scores had a significantly shorter OS and a higher five-year leukemic transformation rate compared with those with lower scores. The prognostic significance of our 4-lncRNA risk score could be validated in an independent MDS cohort. In multivariate analysis, higher lncRNA scores remained an independent unfavorable risk factor for OS (RR 4.783, 95% CI 2.491-9.182, P<0.001) irrespective of age, cytogenetics, IPSS-R and gene mutations. To our knowledge, this is the first report to provide a lncRNA platform for risk stratification of MDS patients. In conclusion, our integrated 4-lncRNA risk scoring system is correlated with distinctive clinical and biological features in MDS patients, and serves as an independent prognostic factor for overall survival and leukemic transformation. This concise yet powerful lncRNA-based scoring system can help improve the current risk stratification of MDS patients. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T01:21:46Z (GMT). No. of bitstreams: 1 ntu-106-P04421019-1.pdf: 4211138 bytes, checksum: 2070d5b46806132310c71d85be8e2a23 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii 英文摘要 iv 碩士論文內容 第一章Introduction 1 第二章 Materials and methods 3 第一節Patient recruitment 3 第二節 Cytogenetic and mutation analyses 3 第三節 Microarray analysis of lncRNA and data processing 3 第四節 Establishment of the lncRNA risk score 4 第五節 Bioinformatics approaches for biological inference of the 4 lncRNAs 5 第六節 Statistical analysis 5 第三章Results 6 第一節 Patient population demographics 6 第二節 Computing the lncRNA risk score 6 第三節Comparison of clinical characteristics between patients with high vs. low lncRNA risk scores 6 第四節Comparison of cytogenetic and genetic alterations between patients with high vs. low lncRNA risk scores 7 第五節Correlation of the lncRNA risk score with oeverall survival and leukemic transformation 8 第六節Correlation of the lncRNA signature with gene expression and potential functionality 10 第四章Discussion 12 第五章Future direction 15 第六章Reference 16 第七章Tables and figures 23 第一節 Tables 23 第二節 Figures 39 第八章Addendum 56 | |
| dc.language.iso | en | |
| dc.subject | 基因突變 | zh_TW |
| dc.subject | 骨髓化生不良症候群 | zh_TW |
| dc.subject | 長鏈非編碼RNA | zh_TW |
| dc.subject | 預後 | zh_TW |
| dc.subject | Long non-coding RNA | en |
| dc.subject | myelodysplastic syndromes | en |
| dc.subject | gene mutation | en |
| dc.subject | prognosis | en |
| dc.title | 以四個長鏈非編碼核醣核酸組成之評分系統預測骨髓化生不良症候群病患之預後 | zh_TW |
| dc.title | A 4-lncRNA Scoring System for Prognostication in Adult Myelodysplastic Syndromes | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 周文堅 | |
| dc.contributor.oralexamcommittee | 陳沛隆 | |
| dc.subject.keyword | 長鏈非編碼RNA,骨髓化生不良症候群,基因突變,預後, | zh_TW |
| dc.subject.keyword | Long non-coding RNA,myelodysplastic syndromes,gene mutation,prognosis, | en |
| dc.relation.page | 56 | |
| dc.identifier.doi | 10.6342/NTU201702922 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-08-10 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 臨床醫學研究所 | zh_TW |
| 顯示於系所單位: | 臨床醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 4.11 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
