Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 病理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67156
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林中梧(Chung-Wu Lin)
dc.contributor.authorChien-Yu chenen
dc.contributor.author陳建宇zh_TW
dc.date.accessioned2021-06-17T01:21:42Z-
dc.date.available2022-08-28
dc.date.copyright2017-08-28
dc.date.issued2017
dc.date.submitted2017-08-10
dc.identifier.citation1. Chen, H.H., et al., The PTEN-AKT-mTOR/RICTOR Pathway in Nasal Natural Killer Cell Lymphoma Is Activated by miR-494-3p via PTEN But Inhibited by miR-142-3p via RICTOR. Am J Pathol, 2015. 185(5): p. 1487-99.
2. Aozasa, K., et al., Nasal NK/T-cell lymphoma: epidemiology and pathogenesis. Int J Hematol, 2008. 87(2): p. 110-7.
3. Lin, T.C., et al., Intramucosal variant of nasal natural killer (NK)/T cell lymphoma has a better survival than does invasive variant: implication on loss of E26 transformation-specific sequence 1 (ETS-1) and T-box expressed in T cells (T-bet) with invasion. Histopathology, 2012. 60(2): p. 287-95.
4. Kwong, Y.L., Natural killer-cell malignancies: diagnosis and treatment. Leukemia, 2005. 19(12): p. 2186-94.
5. Marcenaro, E., et al., NK/DC crosstalk in anti-viral response. Adv Exp Med Biol, 2012. 946: p. 295-308.
6. VanDeusen, J.B. and M.A. Caligiuri, New developments in anti-tumor efficacy and malignant transformation of human natural killer cells. Curr Opin Hematol, 2003. 10(1): p. 55-9.
7. Lanier, L.L., Evolutionary struggles between NK cells and viruses. Nat Rev Immunol, 2008. 8(4): p. 259-68.
8. Kanegane, H., et al., EBV-NK cells interactions and lymphoproliferative disorders. Leuk Lymphoma, 1998. 29(5-6): p. 491-8.
9. Yoneda, N., et al., Detection of Epstein-Barr virus genome in natural-killer-like cell line, YT. Leukemia, 1992. 6(2): p. 136-41.
10. Townsend, M.J., et al., T-bet regulates the terminal maturation and homeostasis of NK and Valpha14i NKT cells. Immunity, 2004. 20(4): p. 477-94.
11. Robbins, S.H., et al., Direct effects of T-bet and MHC class I expression, but not STAT1, on peripheral NK cell maturation. Eur J Immunol, 2005. 35(3): p. 757-65.
12. Szabo, S.J., et al., A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell, 2000. 100(6): p. 655-69.
13. Szabo, S.J., et al., Distinct effects of T-bet in TH1 lineage commitment and IFN-gamma production in CD4 and CD8 T cells. Science, 2002. 295(5553): p. 338-42.
14. Yang, X.O., Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. 2008. 29(1): p. 44-56.
15. Hwang, E.S., J.H. Hong, and L.H. Glimcher, IL-2 production in developing Th1 cells is regulated by heterodimerization of RelA and T-bet and requires T-bet serine residue 508. J Exp Med, 2005. 202(9): p. 1289-300.
16. Lazarevic, V., L.H. Glimcher, and G.M. Lord, T-bet: a bridge between innate and adaptive immunity. Nat Rev Immunol, 2013. 13(11): p. 777-89.
17. Wang, Y., et al., The transcription factors T-bet and Runx are required for the ontogeny of pathogenic interferon-gamma-producing T helper 17 cells. Immunity, 2014. 40(3): p. 355-66.
18. Lazarevic, V. and L.H. Glimcher, T-bet in disease. Nat Immunol, 2011. 12(7): p. 597-606.
19. Oh, S. and E.S. Hwang, The role of protein modifications of T-bet in cytokine production and differentiation of T helper cells. J Immunol Res, 2014. 2014: p. 589672.
20. Lin, T.C., et al., Epstein-Barr virus-encoded miR-BART20-5p inhibits T-bet translation with secondary suppression of p53 in invasive nasal NK/T-cell lymphoma. Am J Pathol, 2013. 182(5): p. 1865-75.
21. Huang, W.T. and C.W. Lin, EBV-encoded miR-BART20-5p and miR-BART8 inhibit the IFN-gamma-STAT1 pathway associated with disease progression in nasal NK-cell lymphoma. Am J Pathol, 2014. 184(4): p. 1185-97.
22. Mukhopadhyay, R., et al., The GAIT system: a gatekeeper of inflammatory gene expression. Trends Biochem Sci, 2009. 34(7): p. 324-31.
23. Satterwhite, E., et al., The BCL11 gene family: involvement of BCL11A in lymphoid malignancies. Blood, 2001. 98(12): p. 3413-20.
24. Avram, D., et al., COUP-TF (chicken ovalbumin upstream promoter transcription factor)-interacting protein 1 (CTIP1) is a sequence-specific DNA binding protein. Biochem J, 2002. 368(Pt 2): p. 555-63.
25. Bernard, O.A., et al., A new recurrent and specific cryptic translocation, t(5;14)(q35;q32), is associated with expression of the Hox11L2 gene in T acute lymphoblastic leukemia. Leukemia, 2001. 15(10): p. 1495-504.
26. Cismasiu, V.B., et al., BCL11B participates in the activation of IL2 gene expression in CD4+ T lymphocytes. Blood, 2006. 108(8): p. 2695-702.
27. Senawong, T., et al., Involvement of the histone deacetylase SIRT1 in chicken ovalbumin upstream promoter transcription factor (COUP-TF)-interacting protein 2-mediated transcriptional repression. J Biol Chem, 2003. 278(44): p. 43041-50.
28. Cismasiu, V.B., et al., BCL11B functionally associates with the NuRD complex in T lymphocytes to repress targeted promoter. Oncogene, 2005. 24(45): p. 6753-64.
29. Grabarczyk, P., et al., Inhibition of BCL11B expression leads to apoptosis of malignant but not normal mature T cells. Oncogene, 2007. 26(26): p. 3797-810.
30. Huang, X., et al., Gene expression profiles in BCL11B-siRNA treated malignant T cells. J Hematol Oncol, 2011. 4: p. 23.
31. Walker, J.A., et al., Bcl11b is essential for group 2 innate lymphoid cell development. J Exp Med, 2015. 212(6): p. 875-82.
32. Califano, D., et al., Transcription Factor Bcl11b Controls Identity and Function of Mature Type 2 Innate Lymphoid Cells. Immunity, 2015. 43(2): p. 354-68.
33. Arlotta, P., et al., Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo. Neuron, 2005. 45(2): p. 207-21.
34. Inoue, J., et al., Identification of BCL11B as a regulator of adipogenesis. Sci Rep, 2016. 6: p. 32750.
35. Przybylski, G.K., et al., Disruption of the BCL11B gene through inv(14)(q11.2q32.31) results in the expression of BCL11B-TRDC fusion transcripts and is associated with the absence of wild-type BCL11B transcripts in T-ALL. Leukemia, 2005. 19(2): p. 201-8.
36. Obata, M., R. Kominami, and Y. Mishima, BCL11B tumor suppressor inhibits HDM2 expression in a p53-dependent manner. Cell Signal, 2012. 24(5): p. 1047-52.
37. Li, P., et al., Reprogramming of T cells to natural killer-like cells upon Bcl11b deletion. Science, 2010. 329(5987): p. 85-9.
38. Huang, X., X. Du, and Y. Li, The role of BCL11B in hematological malignancy. Exp Hematol Oncol, 2012. 1(1): p. 22.
39. Lamichhane, R., et al., A DEAD-box protein acts through RNA to promote HIV-1 Rev-RRE assembly. Nucleic Acids Res, 2017. 45(8): p. 4632-4641.
40. Malim, M.H. and B.R. Cullen, HIV-1 structural gene expression requires the binding of multiple Rev monomers to the viral RRE: implications for HIV-1 latency. Cell, 1991. 65(2): p. 241-8.
41. Djuranovic, S., A. Nahvi, and R. Green, A parsimonious model for gene regulation by miRNAs. Science, 2011. 331(6017): p. 550-3.
42. Mukhopadhyay, R., et al., DAPK-ZIPK-L13a axis constitutes a negative-feedback module regulating inflammatory gene expression. Mol Cell, 2008. 32(3): p. 371-82.
43. Ray, P.S. and P.L. Fox, A post-transcriptional pathway represses monocyte VEGF-A expression and angiogenic activity. Embo j, 2007. 26(14): p. 3360-72.
44. Ray, P.S., et al., A stress-responsive RNA switch regulates VEGFA expression. Nature, 2009. 457(7231): p. 915-9.
45. Vyas, K., et al., Genome-wide polysome profiling reveals an inflammation-responsive posttranscriptional operon in gamma interferon-activated monocytes. Mol Cell Biol, 2009. 29(2): p. 458-70.
46. Marquez-Jurado, S., et al., Identification of a gamma interferon-activated inhibitor of translation-like RNA motif at the 3' end of the transmissible gastroenteritis coronavirus genome modulating innate immune response. MBio, 2015. 6(2): p. e00105.
47. Kapasi, P., et al., L13a blocks 48S assembly: role of a general initiation factor in mRNA-specific translational control. Mol Cell, 2007. 25(1): p. 113-26.
48. Sampath, P., et al., Transcript-selective translational silencing by gamma interferon is directed by a novel structural element in the ceruloplasmin mRNA 3' untranslated region. Mol Cell Biol, 2003. 23(5): p. 1509-19.
49. Arif, A., et al., Two-site phosphorylation of EPRS coordinates multimodal regulation of noncanonical translational control activity. Mol Cell, 2009. 35(2): p. 164-80.
50. Arif, A., et al., Heterotrimeric GAIT complex drives transcript-selective translation inhibition in murine macrophages. Mol Cell Biol, 2012. 32(24): p. 5046-55.
51. Yao, P., et al., Coding region polyadenylation generates a truncated tRNA synthetase that counters translation repression. Cell, 2012. 149(1): p. 88-100.
52. Sampath, P., et al., Noncanonical function of glutamyl-prolyl-tRNA synthetase: gene-specific silencing of translation. Cell, 2004. 119(2): p. 195-208.
53. Glisovic, T., et al., RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett, 2008. 582(14): p. 1977-86.
54. Cook, K.B., T.R. Hughes, and Q.D. Morris, High-throughput characterization of protein-RNA interactions. Brief Funct Genomics, 2015. 14(1): p. 74-89.
55. Castello, A., et al., Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell, 2012. 149(6): p. 1393-406.
56. Brown, R.S., Zinc finger proteins: getting a grip on RNA. Curr Opin Struct Biol, 2005. 15(1): p. 94-8.
57. Tan, C., W. Li, and W. Wang, Localized frustration and binding-induced conformational change in recognition of 5S RNA by TFIIIA zinc finger. J Phys Chem B, 2013. 117(50): p. 15917-25.
58. Muto, Y., et al., The structure and biochemical properties of the human spliceosomal protein U1C. J Mol Biol, 2004. 341(1): p. 185-98.
59. Rice, W.G., et al., Azodicarbonamide inhibits HIV-1 replication by targeting the nucleocapsid protein. Nat Med, 1997. 3(3): p. 341-5.
60. Garcia, C.C., N.A. Candurra, and E.B. Damonte, Differential inhibitory action of two azoic compounds against arenaviruses. Int J Antimicrob Agents, 2003. 21(4): p. 319-24.
61. Goebel, F.D., et al., Phase I/II dose escalation and randomized withdrawal study with add-on azodicarbonamide in patients failing on current antiretroviral therapy. Aids, 2001. 15(1): p. 33-45
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67156-
dc.description.abstract鼻NK細胞淋巴癌(NNL) 是與EB病毒(EBV)有相關的NK细胞淋巴癌,而T-bet是個重要的轉錄因子,會影響毒殺T細胞或NK細胞interferon-gamma (IFN-γ) 的產生,EB 病毒編碼的miR-BART20-5P 抑制T-bet 而誘導鼻NK 細胞淋巴癌對組織的侵入性。YT cells 是人類EBV+ NK-like淋巴癌的細胞株,為了研究miRNA抑制T-bet轉譯的機制,我們用genome-wide shRNA library來篩選YT cells的方式找到BCL11B shRNA會誘導T-bet表現,之後將Flag-BCL11B-EGFP的表現質體用轉染的方式讓YT cells大量表現BCL11B,透過流式細胞分選儀分選出有EGFP的YT cells進行Western blotting分析,發現其T-bet蛋白表現量比EGFP negative的YT cells低,然而T-bet mRNAs並無顯著差異,接著在luciferase assays中我們發現BCL11B會對T-bet抑制是透過結合在T-bet 3’-UTR,而藉由序列比對分析更進一步發現抑制的結合區可能是位在T-bet 3’-UTR 的GAIT-like domains,之後經由RT-PCR分析來證實GAIT-like element-G4會與BCL11B的zinc finger domains作用。除此之外,我們透過YT cells 來表現His-EGFP-BCL11B、 RRE-T-bet-mRNA, 以及Flag-Rev-EGFP,利用Rev-RRE的作用再次證實BCL11B確實與T-bet mRNA的作用,最後我們合成GAIT-like elements 以及Zinc finger peptides透過pull down assay來計算出dissociation constant (Kd),這些結果將來會用在設計miRNA 或 peptide類似物或者是zinc finger抑制劑透過干擾BCL11B來減緩NNL的侵入性。zh_TW
dc.description.abstractNasal NK-cell lymphoma (NNL) is an Epstein-Barr virus (EBV)-associated aggressive lymphoma of NK cell origin, endemic in Taiwan. T-bet is the key transcription factor involved in interferon-gamma (IFN-γ) production by cytotoxic T or NK cells. EBV-encoded miR-BART20-5p inhibits T-bet translation and induces an aggressive and invasive behavior of NNL. The YT cell line is a human EBV+ NK-like lymphoma cell line. To investigate the mechanisms of miRNA-mediated T-bet translation inhibition, we transduced a genome-wide shRNA library into YT cells and found that the BCL11B shRNA could up-regulate T-bet expression. An expression vector for Flag-BCL11B-EGFP was transfected into YT cells. After sorting, EGFP positive YT cells had lower expression of T-bet than EGFP negative YT cells by Western blotting, in spite of similar levels of T-bet mRNAs by real-time RT-PCR. Using luciferase assays, we confirmed BCL11B interacts with 3’-untranslated region (UTR) of T-bet. Further analysis showed the presence of GAIT-like domains in the T-bet 3’-UTR. Real-time RT-PCR of precipitated lysate from YT cells overexpressing the zinc fingers of BCL11B confirmed interactions between interferon-gamma-activated inhibitor of translation (GAIT) -like elements and zinc finger domains of BCL11B. Finally, we used synthetic GAIT-like elements and zinc finger peptides in a pull-down assay to obtain a dissociation constant. The data will be used to design miRNA or peptide mimics and zinc finger inhibitor that may ameliorate the invasive behavior of NNL through interfering with BCL11B.en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:21:42Z (GMT). No. of bitstreams: 1
ntu-106-R04444002-1.pdf: 1903564 bytes, checksum: 8e72b8ba6224e893c6720fa3a34518b3 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontentsContents I
致謝 III
摘要 IV
Abstract V
Chapter 1: Introduction 1
Chapter 2: Materials and Methods 5
2.1 Plasmid constructs and synthesis of RNA and peptides 5
2.2 Synthesis of G4 and peptide 5
2.3 Cell lines and stable cell lines 5
2.4 Cell sorting and flow cytometry 7
2.5 Western Blotting 7
2.6 Luciferase assay 9
2.7 Real-time RT-PCR 9
2.8 Ni-NTA magnetic beads 10
2.9 G4 RNA pull-down assay by BCL11B or zinc fingers after crosslink (Fig 4C) 11
2.10 G4 RNA pull-down assay by synthetic peptide without crosslink (Fig 5) 12
Chapter 3: Results 14
3.1 Five siRNAs from the genome-wide shRNA Library induce T-bet expression. 14
3.2 BCL11B and TRIM71 inhibit T-bet expression. 14
3.3 Localization of BCL11B and TRIM71 in YT cells. 15
3.4 BCL11B inhibit the luciferase via T-bet 3’-UTR. 15
3.5 GAIT-like elements and BCL11B zinc fingers inhibit T-bet translation. 16
3.6 G4 RNA interacts with the sixth zinc finger of BCL11B 16
3.7 His-EGFP-BCL11B co-precipitates Flag-Rev-EGFP via RRE-T-bet mRNA. 17
Chapter 4: Discussion 19
Chapter 5: Conclusion 24
Figures 25
Reference 39
Appendix 48
dc.language.isoen
dc.subject鼻自然殺手細胞淋巴癌zh_TW
dc.subjectEBV病毒zh_TW
dc.subjectT-bet 轉錄因子zh_TW
dc.subjectB細胞淋巴癌11Bzh_TW
dc.subjectGAIT-like結構zh_TW
dc.subjectEpstein-Barr virusen
dc.subjectNasal NK-cell lymphomaen
dc.subjectT-beten
dc.subjectBCL11Ben
dc.subjectGAIT-like domainen
dc.title以YT cells作為鼻NK細胞淋巴癌模型探討BCL11B 抑制T-bet mRNA 轉譯zh_TW
dc.titleBCL11B inhibits translation of T-bet mRNA in YT cells: a model for nasal NK-cell lymphomaen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蕭超隆,蔡錦華,葉德輝
dc.subject.keyword鼻自然殺手細胞淋巴癌,EBV病毒,T-bet 轉錄因子,B細胞淋巴癌11B,GAIT-like結構,zh_TW
dc.subject.keywordNasal NK-cell lymphoma,Epstein-Barr virus,T-bet,BCL11B,GAIT-like domain,en
dc.relation.page59
dc.identifier.doi10.6342/NTU201702705
dc.rights.note有償授權
dc.date.accepted2017-08-10
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept病理學研究所zh_TW
顯示於系所單位:病理學科所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
1.86 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved