Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67137
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor管傑雄(Chieh-Hsiung Kuan)
dc.contributor.authorTao Yangen
dc.contributor.author楊濤zh_TW
dc.date.accessioned2021-06-17T01:21:04Z-
dc.date.available2022-08-11
dc.date.copyright2017-08-11
dc.date.issued2017
dc.date.submitted2017-08-10
dc.identifier.citation[1]. Science, C. (2016). 國立臺灣大學電機資訊學院電子工程學研究所 碩士論文. https://doi.org/10.6342/NTU201603052
[2]. Lin, S. H., Feng, D. J. Y., Lee, M. L., Lay, T. S., Sun, T. P., & Kuan, C. H. (2012). Double-barrier superlattice infrared photodetector integrated with multiple quantum-well infrared photodetector to improve performance. International Journal of Electrochemical Science, 7(7), 5746–5753.
[3]. Gunapala, S. D., & Bandara, S. V. (n.d.). GaAs / AIGaAs based quantum well infrared photodetector focal plane arrays.
[4]. RK, N. (1994). Chapter 1: Introduction, 1–10. https://doi.org/10.1016/S0167-8922(08)70751-X
[5]. Andersson, J. Y., Lundqvist, L., & Paska, Z. F. (1991). Quantum efficiency enhancement of AlGaAs/GaAs quantum well infrared detectors using a waveguide with a grating coupler. Applied Physics Letters, 58(20), 2264–2266. https://doi.org/10.1063/1.104917
[6]. Andersson, J. Y., & Lundqvist, L. (1991). Near-unity quantum efficiency of AlGaAs/GaAs quantum well infrared detectors using a waveguide with a doubly periodic grating coupler. Applied Physics Letters, 59(7), 857–859. https://doi.org/10.1063/1.105259
[7]. Moon, J., Li, S. S., & Lee, J. H. (2003). A high performance quantum well infrared photodetector using superlattice-coupled quantum wells for long wavelength infrared detection. Infrared Physics and Technology, 44(4), 229–234. https://doi.org/10.1016/S1350-4495(02)00226-8
[8]. Gunapala, S. D., Bandara, S. V, Liu, J. K., Mumolo, J. M., Rafol, S. B., Ting, D. Z., … Hill, C. (2014). Quantum Well Infrared Photodetector Technology and Applications. IEEE Journal of Selected Topics in Quantum Electronics, 20(6). https://doi.org/10.1109/JSTQE.2014.2324538
[9]. Kalchmair, S., Gansch, R., Ahn, S. I., Andrews, A. M., Detz, H., Zederbauer, T., … Strasser, G. (2012). Detectivity enhancement in quantum well infrared photodetectors utilizing a photonic crystal slab resonator. Optics Express, 20(5), 5622. https://doi.org/10.1364/OE.20.005622
[10]. Photodetectors, S. I. (n.d.). Development of Superlattice Infrared Photodetectors, 113–137.
[11]. Chen, C. C., Chen, H. C., Hsu, M. C., Hsieh, W. H., Kuan, C. H., Wang, S. Y., & Lee, C. P. (2002). Performance and application of a superlattice infrared photodetector with a blocking barrier. Journal of Applied Physics, 91(3), 943–948. https://doi.org/10.1063/1.1430887
[12]. Li, K., Jiang, K., Zhang, L., Wang, Y., Mao, L., Zeng, P. (2016). Raman scattering enhanced within the plasmonic gap between an isolated Ag triangular nanoplate and Ag film. Nanotechnology, 27(16), 165401. https://doi.org/10.1088/0957-4484/27/16/165401
[13]. Levine, B. F. (1993). Quantum-well infrared photodetectors. Journal of Applied Physics, 74(8). https://doi.org/10.1063/1.354252
[14]. Choi, K. K. (2012). Electromagnetic modeling of edge coupled quantum well infrared photodetectors. Journal of Applied Physics, 111(12), 18–22. https://doi.org/10.1063/1.4729810
[15]. Liu, D., Fu, Y.-Q., Yang, L.-C., Zhang, B.-S., Li, H.-J., Fu, K., & Xiong, M. (2012). Influence of Passivation Layers for Metal Grating-Based Quantum Well Infrared Photodetectors. Chinese Physics Letters, 29(6), 60701. https://doi.org/10.1088/0256-307X/29/6/060701
[16]. Lee, M.-L., Hsieh, C.-J., You, Y.-H., Su, V.-C., Chen, P.-H., Lin, H.-C., … Kuan, C.-H. (2013). Performance enhancement in Quantum Well Infrared Photodetector utilizing the Grating Structure. Cleo: 2013, CM3F.7. https://doi.org/10.1364/CLEO_SI.2013.CM3F.7
[17]. Ii, T. (n.d.). Superlattice Detectors.
[18]. E. Dupont, “Optimization of lamellar gratings for quantum-well infrared photodetectors,” J. Appl. Phys. 88, 5 (2000).
[19]. C. H . Kuan, W. H. Hsieh, S. Y. Lin, C. C. Chen, and J. M. Chen, “Proceedings of SPIE ”The International Society for optical Engineering,” v4288, p151-162 (2001)
[20]. Sarath D. Gunapala, Jin S. Park, Gabby Sarusi, True-Lon Lin, John K. Liu, Paul D. Maker, Richard E. Muller, Craig A. Shott, and Ted Hoelter, “15-μm 128*128 GaAs /AlxGa1-xAs Quantum Well Infrared Photodetector Focal Plane Array Camera,”IEEE Transactions on Electron Devices, Vol. 44, No. 1, (1997)
[21]. H. C. Liu, Z. R. Wasilewski, and M. Buchanan, “Segregation of Si doping in GaAs-AlGaAs quantum wells and the cause of the asymmetry in the current–voltage characteristics of intersubband infrared detectors,” Appl. Phys. Lett. vol. 63, pp. 761–763 (1993)
[22]. Wei, Wu et al. ”A normal-incident quantum well infrared photodetector enhanced by surface plasmon resonance”. (2010)
[23]. S. Kalchmair, et al. “Photonic crystal slab quantum well infrared photodetector” (2011)
[24]. Wook Jae Yoo, Kyoung Won Jang, Jeong Ki Seo, Jinsoo Moon, Ki-Tek Han, Jang-Yeon Park, Byung Gi Park and Bongsoo Lee, “Development of a 2-channel embedded infrared fiber-optic temperature sensor using silver halide optical fibers”, Sensors (2011)
[25]. Wikipedia, “Evanescent Field” https://en.wikipedia.org/wiki/Evanescent_field
[26]. Wikipedia, “近紅外線影像技術” https://zh.wikipedia.org/wiki/%E8%BF%91%E7%B4%85%E5%A4%96%E7%B7%9A%E5%BD%B1%E5%83%8F%E6%8A%80%E8%A1%93
[27]. Wikipedia, “無限深位能井” https://zh.wikipedia.org/wiki/%E7%84%A1%E9%99%90%E6%B7%B1%E6%96%B9%E5%BD%A2%E9%98%B1
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67137-
dc.description.abstract量子井紅外線光偵測器在各領域中被廣泛應用,其中包含天文、醫療、建築、軍事、安全系統等領域。本論文通過添加超晶格結構與光柵結構,以提高元件的光吸收效率。
光柵的作用可使光能大量集中於基板主動層,增加光電流,並能大幅增加元件之光吸收率。超晶格的結構可使電子容易被光激發,讓元件可以在低偏壓下操作,其電阻小,可以有效降低暗電流並減少雜訊產生。本論文也通過改變光柵蝕刻深度,藉此改變光場的能量分佈,使光場集中於主動層,提高元件之響應度。
我們發現當光柵週期固定於2μm時,光柵深度與響應度之間的關係並不是遞增函數,而是在深度為1.3μm時達響應度之最佳值,與沒有光柵結構的元件相比較,有2.5倍的增益。最佳深度為1.3μm之光柵結構最高操作溫度可以量測到83K。
zh_TW
dc.description.abstractQuantum wells Infrared photodetector have been widely used in many fields, such as astronomy, medical, construction, military, security systems and etc. In our study, superlattice structure is added in order to enhance light absorption efficiency. Grating structure can also improve responsivity.
The effect of grating system not only can concentrate light energy and then improve the photocurrent, but also can greatly increase its absorption in the active layer. Superlattice structure can help electrons easily excited by photons, which make our device can be operated at low bias voltage. Due to the small resistance, the dark current can be effectively reduced and then reduce the noise generation. Another study is to enhance responsivity of the photo detector by changing grating depth.
We find that as the period of grating structure is fixed at 2μm, the relationship between the grating depth and the responsivity is not an increasing function. According to the results, the optimal value of the responsivity is detected when the grating depth is 1.3 μm. Compared with the devices without the grating structure, our best device had 2.5 times of the gain. The maximum operation temperature of our best device is measured at 83K.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:21:04Z (GMT). No. of bitstreams: 1
ntu-106-R04945043-1.pdf: 4251334 bytes, checksum: a2edc94c3643e056d434388b71e038b4 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents口試委員會審定書 I
致謝 II
中文摘要 III
ABSTRACT IV
目錄 V
圖目錄 IX
表目錄 XII
一.緒論 1
1.1 前言 1
1.2 動機 3
1.3 論文架構 4
二.紅外線光偵測器之原理及量測方法 6
2.1 紅外線光偵測器的基本原理 6
2.1.1 紅外線的介紹 6
2.1.2 黑體輻射 7
2.1.3 紅外線光偵測器 9
2.1.4 漸逝波 10
2.2 GaAs/AlxGa1-xAs 超晶格與量子井多層結構 12
2.2.1 內能帶躍遷光偵測器 12
2.2.2 光致電導之量子井紅外線偵測器 12
2.2.3光致電壓之超晶格紅外線偵測器 13
2.3 光柵結構對於超晶格與量子井多層結構之改善 15
2.3.1 光柵結構之改善目的與方法 15
2.3.2 光柵結構之磁場能量分佈之模擬方法 16
2.4 介紹量測儀器及特性量測方法 19
2.4.1 傅利葉轉換紅外線光譜儀(FTIR)的介紹 19
2.4.2 相對光譜相應 20
2.4.3 絕對響應(Responsivity) 21
2.4.4 暗電流與光電流之量測 23
三.元件製作流程 24
3.1 實驗儀器簡介 24
3.1.1 電漿增強型化學氣相沉積(Plasma-Enhanced CVD, PECVD) 24
3.1.2 感應式耦合電漿蝕刻(Inductively-Coupled Plasma Reactive-Ion Etching ICP-RIE) 25
3.1.3 微影技術與電子束微影系統(E-Beam Lithography System) 26
3.1.4 電子槍蒸鍍系統(E-Gun Evaporation System) 28
3.1.5 掃描式電子顯微鏡(Scanning Electron Microscope , SEM) 29
3.1.6 快速熱退火(Rapid Thermal Annealing, RTA) 31
3.2 製程步驟 31
3.2.1 樣品清潔 31
3.2.2 二氧化矽薄膜沉積(SiO2) 31
3.2.3 光阻塗佈(Spin Coating) 32
3.2.4 電子束微影(E-beam lithography) 33
3.2.5 顯影(Develop) 34
3.2.6 RIE蝕刻二氧化矽薄膜 34
3.2.7 ICP-RIE蝕刻GaAs基板 35
3.2.8 去除二氧化矽薄膜阻擋層 35
3.2.9 第一步光學微影(黃光製程) 36
3.2.10 濕蝕刻 37
3.2.11 去除光阻阻擋層 37
3.2.12 第二步光學顯影(黃光製程) 37
3.2.13 金屬蒸鍍及離浮(Lift-off) 37
3.2.14 快速熱退火(Rapid Thermal Annealing, RTA) 38
3.2.15 鎊線 38
3.3 元件光柵圖形製程步驟 39
3.4 光學顯影(黃光製程)之光罩圖形 42
3.5 磊晶結構 42
3.6 鎊線及成品示意圖 43
四.實驗結果與分析 45
4.1 光柵週期之比較 45
4.1.1 雙狹縫干涉 45
4.1.2 光柵週期設計 46
4.2蝕刻方式改變 48
4.3 實驗結果分析 49
4.3.1 Superlattice & Quantum Well的peak 49
4.3.2 正偏壓下Superlattice peak 消失的原因 49
4.3.3 光電流零點偏移 51
4.3.4 Grating深度對光電流的關係 52
4.3.5 不同深度之Grating與Responsivity比較 53
4.3.6 不同深度之Grating與Detectivity比較 55
4.3.7 最佳深度之Grating在變溫下的量測結果 56
五.結論與未來展望 57
參考資料 58
dc.language.isozh-TW
dc.subject表面消逝波zh_TW
dc.subject超晶格紅外線光偵測器zh_TW
dc.subject量子井紅外線光偵測器zh_TW
dc.subject光柵結構zh_TW
dc.subjectEvanescent waveen
dc.subjectgrating structureen
dc.subjectQuantum Well infrared photodetector (QWIP)en
dc.subjectSuperlattice infrared photodetector (SLIP)en
dc.title藉由優化光柵結構提高多彩量子井與超晶格紅外線光偵測器之響應度zh_TW
dc.titleHighly response multi color quantum well and superlattice infrared photodetector with grating structure optimizationen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳肇欣(chao-hsin Wu),徐大正(Ta-cheng Hsu),孫允武(Yuen-Wuu Suen),孫建文(Jian-Wen Sun)
dc.subject.keyword表面消逝波,光柵結構,量子井紅外線光偵測器,超晶格紅外線光偵測器,zh_TW
dc.subject.keywordEvanescent wave,grating structure,Quantum Well infrared photodetector (QWIP),Superlattice infrared photodetector (SLIP),en
dc.relation.page60
dc.identifier.doi10.6342/NTU201701977
dc.rights.note有償授權
dc.date.accepted2017-08-11
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
4.15 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved