Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 獸醫專業學院
  4. 獸醫學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67136
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡沛學
dc.contributor.authorYu-Wen Kuoen
dc.contributor.author郭育雯zh_TW
dc.date.accessioned2021-06-17T01:21:01Z-
dc.date.available2020-08-31
dc.date.copyright2017-08-31
dc.date.issued2016
dc.date.submitted2017-08-10
dc.identifier.citationReferences
1. Fraser LR. New insights into possible causes of male infertility. Human Reproduction 1999; 14:38-46.
2. Adeoya- Osiguwa SA, Fraser LR. Evidence for Ca2+- dependent ATPase activity, stimulated by decapacitation factor and calmodulin, in mouse sperm. Molecular reproduction and development 1996; 44:111-120.
3. Adeoya-Osiguwa S, Fraser L. Evidence for Ca2+-dependent ATPase activity, modulated by decapacitation factor and calmodulin, in mouse spermatozoa. J. Reprod. Fertil. Abstr. Sen 1994; 14:9-10.
4. Yanagimachi R. Mammalian fertilization. The physiology of reproduction 1994; 1:189-317.
5. Luconi M, Muratori M, Maggi M, Pecchioli P, Peri A, Mancini M, Filimberti E, Forti G, Baldi E. Uteroglobin and transglutaminase modulate human sperm functions. Journal of andrology 2000; 21:676- 688.
6. Khorasani AM, Cheung AP, Lee C. Cholesterol inhibitory effects on human sperm-induced acrosome reaction. Journal of andrology 2000; 21:586-594.
7. Cross NL. Effect of cholesterol and other sterols on human sperm acrosomal responsiveness. Molecular reproduction and development 1996; 45:212-217.
8. Funahashi H, Asano A, Fujiwara T, Nagai T, Niwa K, Fraser LR. Both fertilization promoting peptide and adenosine stimulate capacitation but inhibit spontaneous acrosome loss in ejaculated boar spermatozoa in vitro. Molecular reproduction and development 2000; 55:117-124.
9. Hernández-González EO, Sosnik J, Edwards J, Acevedo JJ, Mendoza- Lujambio I, López-González I, Demarco I, Wertheimer E, Darszon A, Visconti PE. Sodium and epithelial sodium channels participate in the regulation of the capacitation-associated hyperpolarization in mouse sperm. Journal of Biological Chemistry 2006; 281:5623-5633.
10. Arcelay E, Salicioni AM, Wertheimer E, Visconti PE. Identification of proteins undergoing tyrosine phosphorylation during mouse sperm capacitation. International Journal of Developmental Biology 2004; 52:463-472.
11. Visconti PE. Understanding the molecular basis of sperm capacitation through kinase design. Proceedings of the National Academy of Sciences 2009; 106:667-668.
12. Baldi E, Luconi M, Bonaccorsi L, Muratori M, Forti G. Intracellular events and signaling pathways involved in sperm acquisition of fertilizing capacity and acrosome reaction. Front Biosci 2000; 5:E110-E123.
13. Braun T, Frank H, Dods R, Sepsenwol S. Mn2+-sensitive, soluble adenylate cyclase in rat testis Differentiation from other testicular nucleotide cyclases. Biochimica et Biophysica Acta (BBA)- Enzymology 1977; 481:227-235.
14. Buck J, Sinclair ML, Schapal L, Cann MJ, Levin LR. Cytosolic adenylyl cyclase defines a unique signaling molecule in mammals. Proceedings of the National Academy of Sciences 1999; 96:79-84.
15. Carlson AE, Westenbroek RE, Quill T, Ren D, Clapham DE, Hille B, Garbers DL, Babcock DF. CatSper1 required for evoked Ca2+ entry and control of flagellar function in sperm. Proceedings of the National Academy of Sciences 2003; 100:14864-14868.
16. Carlson AE, Hille B, Babcock DF. External Ca 2+ acts upstream of adenylyl cyclase SACY in the bicarbonate signaled activation of sperm motility. Developmental biology 2007; 312:183-192.
17. Salicioni AM, Platt MD, Wertheimer EV, Arcelay E, Allaire A, Sosnik J, Visconti PE. Signalling pathways involved in sperm capacitation. Society of Reproduction and Fertility supplement 2007; 65:245.
18. Tsai P, Gadella B. Molecular kinetics of proteins at the surface of porcine sperm before and during fertilization. Control of Pig Reproduction VIII 2010; 66:23.
19. Gadella BM, Evans JP. Membrane fusions during mammalian fertilization. In: Cell Fusion in Health and Disease: Springer; 2011: 65-80.
20. Buffone MG, Foster JA, Gerton GL. The role of the acrosomal matrix in fertilization. International Journal of Developmental Biology 2004; 52:511-522.
21. Litscher ES, Williams Z, Wassarman PM. Zona pellucida glycoprotein ZP3 and fertilization in mammals. Molecular reproduction and development 2009; 76:933-941.
22. Florman HM, Wassarman PM. O-linked oligosaccharides of mouse egg ZP3 account for its sperm receptor activity. Cell 1985; 41:313- 324.
23. McPartlin L, Visconti P, Bedford-Guaus S. Guanine-nucleotide exchange factors (RAPGEF3/RAPGEF4) induce sperm membrane depolarization and acrosomal exocytosis in capacitated stallion sperm. Biology of reproduction 2011; 85:179-188.
24. Jin M, Fujiwara E, Kakiuchi Y, Okabe M, Satouh Y, Baba SA, Chiba K, Hirohashi N. Most fertilizing mouse spermatozoa begin their acrosome reaction before contact with the zona pellucida during in vitro fertilization. Proceedings of the National Academy of Sciences 2011; 108:4892-4896.
25. Thérien I, Manjunath P. Effect of progesterone on bovine sperm capacitation and acrosome reaction. Biology of reproduction 2003; 69:1408-1415.
26. Sobrero AJ, MacLeod J. The immediate postcoital test. Fertility and sterility 1962; 13:184-189.
27. Carballada R, Esponda P. Role of fluid from seminal vesicles and coagulating glands in sperm transport into the uterus and fertility in rats. Journal of reproduction and fertility 1992; 95:639-648.
28. Zamboni L, Thompson R, Moore Smith D. Fine morphology of human oocyte maturation in vitro. Biology of reproduction 1972; 7:425-457.
29. BEDFORD JM, YANAGIMACHI R. Initiation of sperm motility after mating in the rat and hamster. Journal of andrology 1992; 13:444-449.
30. Carballada R, Esponda P. Fate and distribution of seminal plasma proteins in the genital tract of the female rat after natural mating. Journal of reproduction and fertility 1997; 109:325-335.
31. Hanson FW, Overstreet JW. The interaction of human spermatozoa with cervical mucus in vivo. American journal of obstetrics and gynecology 1981; 140:173-178.
32. Lyons EA, Taylor PJ, Zheng XH, Ballard G, Levi CS, Kredentser JV. Characterization of subendometrial myometrial contractions throughout the menstrual cycle in normal fertile women. Fertility and sterility 1991; 55:771-774.
33. Kunz G, Beil D, Deininger H, Wildt L, Leyendecker G. The dynamics of rapid sperm transport through the female genital tract: evidence from vaginal sonography of uterine peristalsis and hysterosalpingoscintigraphy. Human Reproduction 1996; 11:627-632.
34. Tung KS, Okada A, Anagimachi R. Sperm Autoantigens and Fertilization. I. Eftects of Antisperm Autoantibodies on Rouleaux Formation, Viability, and Acrosome Reaction of Guinea Pig Spermatozoa. Biology of reproduction 1980; 23:877-886.
35. Suarez S, Pacey A. Sperm transport in the female reproductive tract. Human reproduction update 2006; 12:23-37.
36. Cornwall GA. New insights into epididymal biology and function. Human reproduction update 2009; 15:213-227.
37. Pietrement C, Sun-Wada G, Silva ND, McKee M, Marshansky V, Brown D, Futai M, Breton S. Distinct Expression Patterns of Different Subunit Isoforms of the V-ATPase in the Rat Epididymis 1. Biology of reproduction 2006; 74:185-194.
38. Kujala M, Hihnala S, Tienari J, Kaunisto K, Hästbacka J, Holmberg C, Kere J, Höglund P. Expression of ion transport-associated proteins in human efferent and epididymal ducts. Reproduction 2007; 133:775- 784.
39. Rao MK, Wayne CM, Wilkinson MF. Pem homeobox gene regulatory sequences that direct androgen-dependent developmentally regulated gene expression in different subregions of the epididymis. Journal of Biological Chemistry 2002; 277:48771-48778.
40. Machtinger R, Laurent LC, Baccarelli AA. Extracellular vesicles: roles in gamete maturation, fertilization and embryo implantation. Human reproduction update 2016; 22:182-193.
41. Yanagimachi R, Kamiguchi Y, Mikamo K, Suzuki F, Yanagimachi H. Maturation of spermatozoa in the epididymis of the Chinese hamster. American Journal of Anatomy 1985; 172:317-330.
42. Sullivan R. Epididymosomes: a heterogeneous population of microvesicles with multiple functions in sperm maturation and storage. Asian journal of andrology 2015; 17:726.
43. Girouard J, Frenette G, Sullivan R. Compartmentalization of Proteins in Epididymosomes Coordinates the Association of Epididymal Proteins with the Different Functional Structures of Bovine Spermatozoa1. Biology of reproduction 2009; 80:965-972.
44. Légaré C, Bérubé B, Boué F, Lefièvre L, Morales CR, El- Alfy M, Sullivan R. Hamster sperm antigen P26h is a phosphatidylinositol- anchored protein. Molecular reproduction and development 1999; 52:225-233.
45. Légaré C, Thabet M, Picard S, Sullivan R. Effect of vasectomy on P34H messenger ribonucleic acid expression along the human excurrent duct: a reflection on the function of the human epididymis. Biology of reproduction 2001; 64:720-727.
46. Sullivan R, Frenette G, Girouard J. Epididymosomes are involved in the acquisition of new sperm proteins during epididymal transit. Asian journal of andrology 2007; 9:483-491.
47. Fornes M, Barbieri A, Sosa M, Bertini F. First observations on enzymatic activity and protein content of vesicles separated from rat epididymal fluid. Andrologia 1991; 23:347-351.
48. Frenette G, Lessard C, Madore E, Fortier MA, Sullivan R. Aldose Reductase and Macrophage Migration Inhibitory Factor Are Associated with Epididymosomes and Spermatozoa in the Bovine Epididymis 1. Biology of reproduction 2003; 69:1586-1592.
49. Frenette G, Girouard J, Sullivan R. Comparison between epididymosomes collected in the intraluminal compartment of the bovine caput and cauda epididymidis. Biology of reproduction 2006; 75:885-890.
50. Rejraji H, Vernet P, Drevet JR. GPX5 is present in the mouse caput and cauda epididymidis lumen at three different locations. Molecular reproduction and development 2002; 63:96-103.
51. Frenette G, Girouard J, D'Amours O, Allard N, Tessier L, Sullivan R. Characterization of Two Distinct Populations of Epididymosomes Collected in the Intraluminal Compartment of the Bovine Cauda Epididymis 1. Biology of reproduction 2010; 83:473-480.
52. Zhang H, Martin- Deleon PA. Mouse Epididymal Spam1 (PH- 20) Is Released in the Luminal Fluid With its Lipid Anchor. Journal of andrology 2003; 24:51-58.
53. Chen H, Griffiths G, Galileo DS, Martin-DeLeon PA. Epididymal SPAM1 is a marker for sperm maturation in the mouse. Biology of reproduction 2006; 74:923-930.
54. Kimura M, Kim E, Kang W, Yamashita M, Saigo M, Yamazaki T, Nakanishi T, Kashiwabara S-i, Baba T. Functional Roles of Mouse Sperm Hyaluronidases, HYAL5 and SPAM1, in Fertilization 1. Biology of reproduction 2009; 81:939-947.
55. Frenette G, Sullivan R. Prostasome-like particles are involved in the transfer of P25b from the bovine epididymal fluid to the sperm surface. Molecular reproduction and development 2001; 59:115-121.
56. Raymond AS. Novel tissue-intrinsic functions for SED1/MFG-E8 in the epididymis. Emory University; 2009.
57. Caballero J, Frenette G, Sullivan R. Post testicular sperm maturational changes in the bull: important role of the epididymosomes and prostasomes. Veterinary medicine international 2010; 2011.
58. Arienti G, Carlini E, Palmerini C. Fusion of human sperm to prostasomes at acidic pH. The Journal of membrane biology 1997; 155:89-94.
59. Aumüller G, Renneberg H, Schiemann P-J, Wilhelm B, Seitz J, Konrad L, Wennemuth G. The role of apocrine released proteins in the post-testicular regulation of human sperm function. In: The Fate of the Male Germ Cell: Springer; 1997: 193-219.
60. Vojtech L, Woo S, Hughes S, Levy C, Ballweber L, Sauteraud RP, Strobl J, Westerberg K, Gottardo R, Tewari M. Exosomes in human semen carry a distinctive repertoire of small non-coding RNAs with potential regulatory functions. Nucleic acids research 2014:gku347.
61. Gonzales G. Test for androgen activity at the male reproductive tract in infertile men. Archives of andrology 1994; 32:235-242.
62. Almenara A, Escalante G, Gazzo E, Gonzales G. Transillumination to evaluate spermatogenesis: effect of testosterone enanthate in adult male rats. Archives of andrology 2001; 46:21-27.
63. Tauber P, Propping D, Schumacher G, Zaneveld L. Biochemical aspects of the coagulation and liquefaction of human semen. Journal of Andrology 1980; 1:281-288.
64. Mandal A, Bhattacharyya A. Studies on the coagulational characteristics of human ejaculates. Andrologia 1985; 17:80-86.
65. Mandal A, Bhattacharyya A. Differences in osmolality, pH, buffering capacity, superoxide dismutase and maintenance of sperm motility in human ejaculates according to the degree of coagulation. International journal of andrology 1988; 11:45-51.
66. Lundwall Å, Olsson AYM. Semenogelin II gene is replaced by a truncated LINE1 repeat in the cotton-top tamarin. Biology of reproduction 2001; 65:420-425.
67. Bennett M, Macdonald K, Chan S-W, Luzio JP, Simari R, Weissberg P. Cell surface trafficking of Fas: a rapid mechanism of p53-mediated apoptosis. Science 1998; 282:290-293.
68. De Lamirande E. Semenogelin, the main protein of the human semen coagulum, regulates sperm function. In: Seminars in thrombosis and hemostasis, vol. 33: Copyright© 2007 by Thieme Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.; 2007: 060-068.
69. Comhaire F, Vermeulen L, Ghedira K, Mas J, Irvine S, Callipolitis G. Adenosine triphosphate in human semen: a quantitative estimate of fertilizing potential. Fertility and sterility 1983; 40:500-504.
70. Okamura N, Tajima Y, Soejima A, Masuda H, Sugita Y. Sodium bicarbonate in seminal plasma stimulates the motility of mammalian spermatozoa through direct activation of adenylate cyclase. Journal of Biological Chemistry 1985; 260:9699-9705.
71. Okamura N, Tajima Y, Ishikawa H, Yoshii S, Koiso K, Sugita Y. Lowered levels of bicarbonate in seminal plasma cause the poor sperm motility in human infertile patients. Fertility and sterility 1986; 45:265-272.
72. Fabiani R, Johansson L, Lundkvist Ö, Ronquist G. Prolongation and improvement of prostasome promotive effect on sperm forward motility. European Journal of Obstetrics Gynecology and Reproductive Biology 1995; 58:191-198.
73. Gottlieb C, Svanborg K, Eneroth P, Bygdeman M. Effect of prostaglandins on human sperm function in vitro and seminal adenosine triphosphate content. Fertility and sterility 1988; 49:322- 327.
74. Gonzales GF, Garcia-Hjarles M, Velazquez G, Coyotupa J. Seminal prolactin and its relationship to sperm motility in men. Fertility and sterility 1989; 51:498-503.
75. Chaistitvanich N, Boonsaeng V. Molecular structure of human seminal coagulum: the role of disulfide bonds. Andrologia 1983; 15:446-451.
76. Lilja H, Laurell C-B, Jeppsson J-O. Characterization of the predominant basic protein in human seminal plasma, one cleavage product of the major seminal vesicle protein. Scandinavian journal of clinical and laboratory investigation 1984; 44:439-446.
77. Robert M, Gagnon C. Purification and characterization of the active precursor of a human sperm motility inhibitor secreted by the seminal vesicles: identity with semenogelin. Biology of Reproduction 1996; 55:813-821.
78. IWAMOTO T, GAGNON C. Purification and characterization of a sperm motility inhibitor in human seminal plasma. Journal of andrology 1988; 9:377-383.
79. Mitra A, Richardson RT, O'Rand MG. Analysis of recombinant human semenogelin as an inhibitor of human sperm motility. Biology of reproduction 2010; 82:489-496.
80. Sharma RK, Agarwal A. Role of reactive oxygen species in male infertility. Urology 1996; 48:835-850.
81. Alvarez JG, Storey BT. Role of glutathione peroxidase in protecting mammalian spermatozoa from loss of motility caused by spontaneous lipid peroxidation. Gamete research 1989; 23:77-90.
82. Lewis SE, Sterling ESL, Young IS, Thompson W. Comparison of individual antioxidants of sperm and seminal plasma in fertile and infertile men. Fertility and sterility 1997; 67:142-147.
83. Teijeiro JM, Cabada MO, Marini PE. Sperm binding glycoprotein (SBG) produces calcium and bicarbonate dependent alteration of acrosome morphology and protein tyrosine phosphorylation on boar sperm. Journal of cellular biochemistry 2008; 103:1413-1423.
84. Sasanami T, Matsuzaki M, Mizushima S, Hiyama G. Sperm storage in the female reproductive tract in birds. Journal of Reproduction and Development 2013; 59:334-338.
85. Bruessow K-P, Egerszegi I, Ratky J. Is the function of the porcine sperm reservoir restricted to the ovulatory period? Journal of Reproduction and Development 2014; 60:395-398.
86. Suarez SS. Control of hyperactivation in sperm. Human reproduction update 2008; 14:647-657.
87. Yeste M, Holt WV, Bonet S, Rodríguez- Gil JE, Lloyd RE. Viable and morphologically normal boar spermatozoa alter the expression of heat- shock protein genes in oviductal epithelial cells during co- culture in vitro. Molecular reproduction and development 2014; 81:805-819.
88. Moein-Vaziri N, Phillips I, Smith S, Almiňana C, Maside C, Gil MA, Roca J, Martinez EA, Holt WV, Pockley AG. Heat-shock protein A8 restores sperm membrane integrity by increasing plasma membrane fluidity. Reproduction 2014; 147:719-732.
89. Leemans B, Gadella BM, Sostaric E, Nelis H, Stout TA, Hoogewijs M, Van Soom A. Oviduct Binding and Elevated Environmental pH Induce Protein Tyrosine Phosphorylation in Stallion Spermatozoa1. 2014.
90. Ghersevich S, Massa E, Zumoffen C. Oviductal secretion and gamete interaction. Reproduction 2015; 149:R1-R14.
91. Coy P, Lloyd R, Romar R, Satake N, Matas C, Gadea J, Holt WV. Effects of porcine pre-ovulatory oviductal fluid on boar sperm function. Theriogenology 2010; 74:632-642.
92. Al-Dossary AA, Strehler EE, Martin-DeLeon PA. Expression and secretion of plasma membrane Ca 2+-ATPase 4a (PMCA4a) during murine estrus: association with oviductal exosomes and uptake in sperm. PloS one 2013; 8:e80181.
93. Kaji K, Oda S, Shikano T, Ohnuki T, Uematsu Y, Sakagami J, Tada N, Miyazaki S, Kudo A. The gamete fusion process is defective in eggs of Cd9-deficient mice. Nature genetics 2000; 24:279-282.
94. Runge KE, Evans JE, He Z-Y, Gupta S, McDonald KL, Stahlberg H, Primakoff P, Myles DG. Oocyte CD9 is enriched on the microvillar membrane and required for normal microvillar shape and distribution. Developmental biology 2007; 304:317-325.
95. Barraud-Lange V, Boissonnas CC, Serres C, Auer J, Schmitt A, Lefèvre B, Wolf J-P, Ziyyat A. Membrane transfer from oocyte to sperm occurs in two CD9-independent ways that do not supply the fertilising ability of Cd9-deleted oocytes. Reproduction 2012; 144:53- 66.
96. Tanigawa M, Miyamoto K, Kobayashi S, Sato M, Akutsu H, Okabe M, Mekada E, Sakakibara K, Miyado M, Umezawa A. Possible involvement of CD81 in acrosome reaction of sperm in mice. Molecular reproduction and development 2008; 75:150-155.
97. Ostrowski MC, Kistler W, Williams-Ashman H. A flavoprotein responsible for the intense sulfhydryl oxidase activity of rat seminal vesicle secretion. Biochemical and biophysical research communications 1979; 87:171-176.
98. Ostrowski MC, Kistler W. Properties of a flavoprotein sulfhydryl oxidase from rat seminal vesicle secretion. Biochemistry 1980; 19:2639-2645.
99. Heckler EJ, Rancy PC, Kodali VK, Thorpe C. Generating disulfides with the Quiescin-sulfhydryl oxidases. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 2008; 1783:567-577.
100. Thorpe C, Hoober KL, Raje S, Glynn NM, Burnside J, Turi GK, Coppock DL. Sulfhydryl oxidases: emerging catalysts of protein disulfide bond formation in eukaryotes. Archives of biochemistry and biophysics 2002; 405:1-12.
101. Coppock DL, Thorpe C. Multidomain flavin-dependent sulfhydryl oxidases. Antioxidants redox signaling 2006; 8:300-311.
102. Gross E, Sevier CS, Vala A, Kaiser CA, Fass D. A new FAD-binding fold and intersubunit disulfide shuttle in the thiol oxidase Erv2p. Nature Structural Molecular Biology 2002; 9:61-67.
103. Coppock DL, Cina-Poppe D, Gilleran S. The quiescin Q6 gene (QSCN6) is a fusion of two ancient gene families: thioredoxin and ERV1. Genomics 1998; 54:460-468.
104. Hashimoto Y, Suga Y, Matsuba S, Mizoguchi M, Takamori K, Seitz J, Ogawa H. Inquiry into the role of skin sulfhydryl oxidase in epidermal disulfide bond formation: implications of the localization and regulation of skin SOx as revealed by TPA, retinoic acid, and UVB radiation. The Journal of investigative dermatology 2001; 117:752- 754.
105. Hoober KL, Glynn NM, Burnside J, Coppock DL, Thorpe C. Homology between egg white sulfhydryl oxidase and quiescin Q6 defines a new class of flavin-linked sulfhydryl oxidases. Journal of Biological Chemistry 1999; 274:31759-31762.
106. Morel C, Adami P, Musard J-F, Duval D, Radom J, Jouvenot M. Involvement of sulfhydryl oxidase QSOX1 in the protection of cells against oxidative stress-induced apoptosis. Experimental cell research 2007; 313:3971-3982.
107. Wittke I, Wiedemeyer R, Pillmann A, Savelyeva L, Westermann F, Schwab M. Neuroblastoma-derived sulfhydryl oxidase, a new member of the sulfhydryl oxidase/quiescin6 family, regulates sensitization to interferon γ-induced cell death in human neuroblastoma cells. Cancer research 2003; 63:7742-7752.
108. Benayoun B, Esnard-Fève A, Castella S, Courty Y, Esnard F. Rat Seminal Vesicle FAD-dependent Sulfhydryl Oxidase BIOCHEMICAL CHARACTERIZATION AND MOLECULAR CLONING OF A MEMBER OF THE NEW SULFHYDRYL OXIDASE/QUIESCIN Q6 GENE FAMILY. Journal of Biological Chemistry 2001; 276:13830-13837.
109. Chang T, Morton B. Epididymal sulfhydryl oxidase: a sperm- protective enzyme from the male reproductive tract. Biochemical and biophysical research communications 1975; 66:309-315.
110. Chang T, Zirkin BR. Distribution of sulfhydryl oxidase activity in the rat and hamster male reproductive tract. Biology of reproduction 1978; 18:745-748.
111. Chang T, Zirkin BR. Proteolytic degradation of protamine during thiol- induced nuclear decondensation in rabbit spermatozoa. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology 1978; 204:283-289.
112. Bergmann M, Kumari M, Aumuller G, Hoffmann K, Seitz J. Distribution pattern of testicular sulphydryloxidase immuno- activity in the djungarian hamster (Phodopus sungorus) during photoperiodically induced involution and recrudescence. International journal of andrology 1990; 13:488-499.
113. Bergmann M, Aumüller G, Seitz J, Nieschlag E. Sulfhydryl oxidase immunoreactivity in seminiferous tubules of infertile men. Cell and tissue research 1992; 267:209-214.
114. Bergmann M, Oehmen F, Kumari M, Aumüller G, Seitz J.
Immunohistochemical localization of testicular sulphydryloxidase during sexual maturation of the Djungarian hamster (Phodopus sungorus). Journal of reproduction and fertility 1991; 91:259-265.
115. Kumari M, Aumüller G, Bergmann M, Meinhardt A, Seitz J. Stage- dependent appearance of sulfhydryl oxidase during spermatogenesis in the testis of rat and hamster. Histochemistry and Cell Biology 1990; 94:365-371.
116. Coppock DL, Kopman C, Scandalis S, Gilleran S. Preferential gene expression in quiescent human lung fibroblasts. Cell growth and differentiation 1993; 4:483-483.
117. Mebazaa A, Vanpoucke G, Thomas G, Verleysen K, Cohen-Solal A, Vanderheyden M, Bartunek J, Mueller C, Launay J-M, Van Landuyt N. Unbiased plasma proteomics for novel diagnostic biomarkers in cardiovascular disease: identification of quiescin Q6 as a candidate biomarker of acutely decompensated heart failure. European heart journal 2012; 33:2317-2324.
118. Song H, Zhang B, Watson MA, Humphrey PA, Lim H, Milbrandt J. Loss of Nkx3. 1 leads to the activation of discrete downstream target genes during prostate tumorigenesis. Oncogene 2009; 28:3307-3319.
119. Ouyang X, DeWeese TL, Nelson WG, Abate-Shen C. Loss-of- function of Nkx3. 1 promotes increased oxidative damage in prostate carcinogenesis. Cancer research 2005; 65:6773-6779.
120. Fass D, Grossman I, Ilani T, Alon A. Compositions for inhibition of quiescin sulfhydryl oxidase (QSOX1) and uses of same. In: Google Patents; 2017.
121. Soloviev M, Esteves MP, Amiri F, Crompton MR, Rider CC. Elevated transcription of the gene QSOX1 encoding quiescin Q6 sulfhydryl oxidase 1 in breast cancer. PloS one 2013; 8:e57327.
122. Lake DF, Faigel DO. The emerging role of QSOX1 in cancer. Antioxidants redox signaling 2014; 21:485-496.
123. Mairet- Coello G, Tury A, Esnard- Feve A, Fellmann D, Risold PY, Griffond B. FAD- linked sulfhydryl oxidase QSOX: Topographic, cellular, and subcellular immunolocalization in adult rat central nervous system. Journal of Comparative Neurology 2004; 473:334- 363.
124. Lin M-H, Lee RK-K, Hwu Y-M, Lu C-H, Chu S-L, Chen Y-J, Chang W-C, Li S-H. SPINKL, a Kazal-type serine protease inhibitor-like protein purified from mouse seminal vesicle fluid, is able to inhibit sperm capacitation. Reproduction 2008; 136:559-571.
125. Sobral ACL, Neto VM, Traiano G, Percicote AP, Gugelmin ES, de Souza CM, Nakao L, Torres LFB, de Noronha L. Immunohistochemical expression of sulfhydryl oxidase (QSOX1) in pediatric medulloblastomas. Diagnostic pathology 2015; 10:37.
126. Rudolf J, Pringle MA, Bulleid NJ. Proteolytic processing of QSOX1A ensures efficient secretion of a potent disulfide catalyst. Biochemical Journal 2013; 454:181-190.
127. Sharma U, Conine CC, Shea JM, Boskovic A, Derr AG, Bing XY, Belleannee C, Kucukural A, Serra RW, Sun F. Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science 2016; 351:391-396.
128. Yu-Wen K, Sheng-Hsiang L, Maeda K-I, Gadella BM, TSAI PSJ. Roles of the reproductive tract in modifications of the sperm membrane surface. Journal of Reproduction and Development 2016; 62:337-343.
129. Suzuki N. Structure, function and biosynthesis of sperm-activating peptides and fucose sulfate glycoconjugate in the extracellular coat of sea urchin eggs. Zoological science 1995; 12:13-27.
130. Poiani A. Complexity of seminal fluid: a review. Behavioral Ecology and Sociobiology 2006; 60:289-310.
131. Monclus MA, Fornes MW. Sperm conjugation in mammal reproductive function: Different names for the same phenomenon? Molecular reproduction and development 2016; 83:884-896.
132. Phillips DM, Bedford JM. Sperm- sperm associations in the loris epididymis. Gamete research 1987; 18:17-25.
133. Fornes MW, Burgos MH. Epididymal glycoprotein involved in rat sperm association. Molecular reproduction and development 1994; 38:43-47.
134. Yanagimachi R, Usui N. Calcium dependence of the acrosome reaction and activation of guinea pig spermatozoa. Experimental cell research 1974; 89:161-174.
135. COOPER TG, WEYDERT S, YEUNG CH, KÜNZL C, SACHSER N. Maturation of epididymal spermatozoa in the nondomesticated guinea pigs Cavia aperea and Galea musteloides. Journal of andrology 2000; 21:154-163.
136. Djakiew D, Jones R. Sperm maturation, fluid transport, and secretion and absorption of protein in the epididymis of the echidna, Tachyglossus aculeatus. Journal of Reproduction and Fertility 1983; 68:445-456.
137. Jones R, James PS, Howes L, Bruckbauer A, Klenerman D. Supramolecular organization of the sperm plasma membrane during maturation and capacitation. Asian journal of andrology 2007; 9:438- 444.
138. Taggart D, Johnson J, O'Brien H, Moore H. Why do spermatozoa of American marsupials form pairs? A clue from the analysis of sperm-pairing in the epididymis of the grey short- tailed opossum, Monodelphis domestica. The Anatomical Record 1993; 236:465-478.
139. Moore H, Dvorakova K, Jenkins N, Breed W. Exceptional sperm cooperation in the wood mouse. Nature 2002; 418:174-177.
140. Fisher HS, Hoekstra HE. Competition drives cooperation among closely related sperm of deer mice. Nature 2010; 463:801-803.
141. Montoto LG, Magaña C, Tourmente M, Martín-Coello J, Crespo C, Luque-Larena JJ, Gomendio M, Roldan ER. Sperm competition, sperm numbers and sperm quality in muroid rodents. PLoS One 2011; 6:e18173.
142. Clulow J, Jones R, Hansen L, Man S. Fluid and electrolyte reabsorption in the ductuli efferentes testis. JOURNAL OF REPRODUCTION AND FERTILITY-SUPPLEMENT- 1998:1-14.
143. Kodali VK, Thorpe C. Oxidative protein folding and the quiescin– sulfhydryl oxidase family of flavoproteins. Antioxidants redox signaling 2010; 13:1217-1230.
144. Thomas P, Smart TG. HEK293 cell line: a vehicle for the expression of recombinant proteins. Journal of pharmacological and toxicological methods 2005; 51:187-200.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67136-
dc.description.abstract背景:在台灣,因不孕症尋求繁殖醫學門診,求助人工受孕技術(Assisted Reproductive Technology, ART)治療的比例逐年提高。然而,在人工受孕技術大量 介入的同時,成功受孕及生育率仍舊無法顯著提高,代表篩選精卵品質的標準有待 改善。現今,精液品質分析多以精子活動力、形態、數量作為主要判定標準,然而 內部因子如:配子的去氧核醣核酸(Deoxyribonucleic Acid, DNA)和染色體 (chromosome)、精子表面膜蛋白組成是否符合受孕標準,無法在執行人工受孕技 術前得知。 目的:精漿成份以及精子表面蛋白質組成和不孕症息息相關,本論文希望藉由探討 精漿蛋白硫氫氧化酶(quiescin sulfhydryl oxidase, QSOXs)和精子在附睪成熟過程、 生殖道中移動到與卵子受精前的交互作用,進一步了解硫氫氧化酶修飾精子表面的 機制,增加配子篩選的參考標準。 方法:(1)以免疫組織染色法以及免疫螢光染色法,,探究小鼠以及豬在雄性生殖 道中兩種硫氫氧化酶(QSOX1C 與 QSOX2)的表現和分佈,(2)從小鼠及豬的儲 精囊分泌液,以離子交換法結合高效液相色譜(High Performance Liquid Chromatography, HPLC)及親和層析純化硫氫氧化酶,(3)藉由人類胚胎腎臟細胞 株(HEK 293 cell line) 建立表現人類硫氫氧化酶-2 (QSOX2)重組蛋白的穩定 細胞株,並以硫酸銨沈澱執行鹽溶鹽析、免疫沈澱法以及親和層析純化硫氫氧化酶, (4)將純化完成的硫氫氧化酶和精子共同培養觀察硫氫氧化酶對精子造成的影響。 結果與結論:(1)在小鼠和豬的雄性生殖道,硫氫氧化酶-1C(QSOX1C)主要分佈 表現在管腔內的分泌液,而硫氫氧化酶-2(QSOX2)以囊狀小泡分佈在上皮細胞前端,(2)透過離子交換法成功純化小鼠儲精囊分泌液中的硫氫氧化酶-1C 可使小鼠 精子產生顯著凝集現象,(3)兩型硫氫氧化酶在雄性生殖道不同區域的表現,可能 代表其在精子成熟過程以及受精前參與的角色不同。透過優化兩型硫氫氧化酶的純 化步驟,未來取得大量純化蛋白後,能夠更深入探討硫氫氧化酶和精子的交互作用, 以了解硫氫氧化酶於精子繁殖生理之影響。zh_TW
dc.description.abstractIn Taiwan, the number of infertile patients seeking for medical assistance via assisted reproductive technology (ART) increases exponentially each year. Despite ART has been used to achieve pregnancy, discrepancies between up-going demands on ART and down- going fertility rate might be explained partly by the lack of thorough evaluations on gamete quality. The commonly used sperm quality assessment systems measure sperm concentration and sperm motility-based parameters without monitoring the non-motility related factors (e.g. sperm DNA or chromosomal abnormality, sperm membrane integrity...etc.). Male infertility is the major cause of conception failure in about 25% of all infertile couples. Many proteins have been proven to be the sperm motility (e.g. spermatic protein DDX4/VASA) or quality marker within the seminal fluid or on the sperm membrane. This research focus on one of the seminal plasma enriched and epididymal segment-specific proteins namely Quiescin Q6 Sulfhydryl Oxidase (QSOX). Sulfhydryl oxidase belongs to the family of oxidoreductase, containing the sulfhydryl (- SH) functional group and can catalyze oxidation of –SH group into stable disulfides (S-S) with the reduction of hydrogen and hydrogen peroxidase (thio-disulfide exchange). There are two isoforms of QSOX express in mammalian cells: QSOX1 and QSOX2. Both QSOX1 and QSOX2 express in most tissues, but QSOX2 is much less abundant than QSOX1. QSOX2 shares 40% identity with QSOX1 having the same overall domain structure and containing a transmembrane domain that confers membrane localization. To investigate the functions of QSOXs on sperm membrane surface modifications, we first purified endogenous QSOX1C proteins from both mouse and porcine. Mouse QSOX1C was purified from seminal vesicle secretions by a series of purification steps including ion exchange chromatography on a DEAE-Sephacel column and ion exchange high- performance liquid chromatography on a sulfopropyl column. Porcine QSOX1C was purified from seminal vesicle and epididymis tissue homogenates as well as from the seminal fluids by ammonium sulfate protein precipitation in combination with antibody- affinity column. To minimize the use of animals, we also established stable cell line overexpressed polyhistidine- and V5-tagged recombinant human QSOX2 using HEK293. A 65 kDa QSOX1C was detected in mouse, while two distinct bands at 50 and 75 kDa were observed in porcine. QSOX2 presents in a vacuole-like structure at the apical region of the epithelium in the reproductive tracts and the amount varies from caput to cauda of mouse and porcine epididymis. Moreover, mouse QSOX1C increases the formation of sperm aggregates by constant recruiting surrounding free-swimming sperm. By successful establishment of stable cell line expresses recombinant human QSOX2 and the natural QSOX1C, we could have the ability to understand the interactions of QSOXs and spermatozoa in the reproductive tract.en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:21:01Z (GMT). No. of bitstreams: 1
ntu-105-R04629006-1.pdf: 195604329 bytes, checksum: 5f72e778719ff64e3aee23703486914f (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員口試委員審定書
誌謝……………………………………………………………………….....i
中文摘要…………………………………………………………………...ii
Abstract……………………………………………………………………iv
Content…………………………………………………………………….vi
List of figures……………………………………………………………...ix
List of tables………………………………………………………………..x
List of tables………………………………………………………………..x
1 CHAPTER 1 Introduction………………………………………….....1
1.1 Sperm membrane surface dynamics and physiological characteristics at different stages of fertilization process…………………………………….1
1.2 The role of reproductive tracts (male and female) on sperm membrane surface modification………………………………………………………..6
1.3 Introduction of QSOX protein……………………………………………13
1.4 Scope of this thesis…………………………………………………………16
2 CHAPTER 2 Methods and materials………………………….…….17
2.1 Chemicals, Reagents, Antibodies…………………………………………17
2.2 Mouse QSOX1C purification and analysis………………………………17
2.3 QSOX1C Antibody Production…………………………………………..20
2.4 Mouse and porcine tissue preparation and immunohistochemistry staining……………………………………………………………………..20
2.5 Immunofluorescence staining of mouse tissue…………………………...21
2.6 Immuno-blotting of mouse and porcine tissue…………………………..22
2.7 Total protein precipitation and Immunoprecipitation (IP) in porcine…23
2.8 Mouse QSOX1C - Sperm Interaction Assays…………………………….23
2.9 Recombinant Human QSOX2 Preparation……………………………...25
3 CHAPTER 3 Results ………………………………………………...30
3.1 Determine the targeted protein purified from seminal vesicle secretion (SVS) is QSOX1C …………………………………………………………30
3.2 The distribution of QSOX1C and QSOX2 in male mouse reproductive organ ………………………………………………………………………33
3.3 Segmented expression of QSOX1C and QSOX2 in mouse epididymis…35
3.4 QSOX1C protein promotes agglutination of murine sperm in vitro …………………………………………………………………….…39
3.5 The distribution of QSOX1C and QSOX2 in boar reproductive organs ………….…………………………………………………………41
3.6 Purification of QSOX1C and QSOX2 from boar reproductive organs …………………………………………………………………….42
3.7 Characterization and purification of recombinant human QSOX2 from established HEK293 cell line ………………….….44
4 CHAPTER 4 Discussion……………………………………………...50
5 References…………………………………………………………….58
dc.language.isoen
dc.title雄性生殖道中硫氫氧化酶的特性化與純化zh_TW
dc.titleCharacterization and Purification of Quiescin Sulfhydryl Oxidase (QSOX) in Male Reproductive Tracten
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李勝祥,張惠雯,吳瑞得,鄭豐邦
dc.subject.keywordQSOX,副睪蛋白質,儲精囊蛋白質,精子凝集,zh_TW
dc.subject.keywordQSOX,Epididymal protein,Seminal vesicle protein,Sperm agglutination,en
dc.relation.page69
dc.identifier.doi10.6342/NTU201702704
dc.rights.note有償授權
dc.date.accepted2017-08-11
dc.contributor.author-college獸醫專業學院zh_TW
dc.contributor.author-dept獸醫學研究所zh_TW
顯示於系所單位:獸醫學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
191.02 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved