Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 解剖學暨細胞生物學科所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67113
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor陳玉怜
dc.contributor.authorTzu-Lin Leeen
dc.contributor.author李紫琳zh_TW
dc.date.accessioned2021-06-17T01:20:18Z-
dc.date.available2020-09-08
dc.date.copyright2017-09-08
dc.date.issued2017
dc.date.submitted2017-08-11
dc.identifier.citation1. Gottlieb RA, Burleson KO, Kloner RA, Babior BM, Engler RL. Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest. 1994;94:1621-1628
2. Reiter RJ, Tan DX. Melatonin: A novel protective agent against oxidative injury of the ischemic/reperfused heart. Cardiovasc Res. 2003;58:10-19
3. Perrelli MG, Pagliaro P, Penna C. Ischemia/reperfusion injury and cardioprotective mechanisms: Role of mitochondria and reactive oxygen species. World J Cardiol. 2011;3:186-200
4. Yong KW, Li YH, Huang GY, Lu TJ, Safwani WKZW, Pingguan-Murphy B, et al. Mechanoregulation of cardiac myofibroblast differentiation: Implications for cardiac fibrosis and therapy. Am J Physiol-Heart C. 2015;309:H532-H542
5. Ye Y, Birnbaum GD, Perez-Polo JR, Nanhwan MK, Nylander S, Birnbaum Y. Ticagrelor protects the heart against reperfusion injury and improves remodeling after myocardial infarction. Arterioscler Thromb Vasc Biol. 2015;35:1805-1814
6. Wang J, Ji SY, Liu SZ, Jing R, Lou WJ. Cardioprotective effect of breviscapine: Inhibition of apoptosis in h9c2 cardiomyocytes via the pi3k/akt/enos pathway following simulated ischemia/reperfusion injury. Pharmazie. 2015;70:593-597
7. Li R, Xiao J, Qing XT, Xing JH, Xia YF, Qi J, et al. Sp1 mediates a therapeutic role of mir-7a/b in angiotensin ii-induced cardiac fibrosis via mechanism involving the tgf-beta and mapks pathways in cardiac fibroblasts. Plos One. 2015;10
8. Toyozaki T, Hiroe M, Tanaka M, Nagata S, Ohwada H, Marumo F. Levels of soluble fas ligand in myocarditis. Am J Cardiol. 1998;82:246-248
9. Elmore S. Apoptosis: A review of programmed cell death. Toxicol Pathol. 2007;35:495-516
10. Nakano K, Vousden KH. Puma, a novel proapoptotic gene, is induced by p53. Mol Cell. 2001;7:683-694
11. Yu J, Wang Z, Kinzler KW, Vogelstein B, Zhang L. Puma mediates the apoptotic response to p53 in colorectal cancer cells. Proc Natl Acad Sci U S A. 2003;100:1931-1936
12. Li R, Geng HH, Xiao J, Qin XT, Wang F, Xing JH, et al. Mir-7a/b attenuates post-myocardial infarction remodeling and protects h9c2 cardiomyoblast against hypoxia-induced apoptosis involving sp1 and parp-1. Sci Rep. 2016;6:29082
13. Tullio F, Penna C, Cabiale K, Femmino S, Galloni M, Pagliaro P. Cardioprotective effects of calcitonin gene-related peptide in isolated rat heart and in h9c2 cells via redox signaling. Biomed Pharmacother. 2017;90:194-202
14. Yang Y, Ding S, Xu G, Chen F, Ding F. Microrna-15a inhibition protects against hypoxia/reoxygenation-induced apoptosis of cardiomyocytes by targeting mothers against decapentaplegic homolog 7. Mol Med Rep. 2017;15:3699-3705
15. Kis K, Liu X, Hagood JS. Myofibroblast differentiation and survival in fibrotic disease. Expert Rev Mol Med. 2011;13:e27
16. Lajiness JD, Conway SJ. Origin, development, and differentiation of cardiac fibroblasts. J Mol Cell Cardiol. 2014;70:2-8
17. Lal H, Ahmad F, Zhou JB, Yu JE, Vagnozzi RJ, Guo YJ, et al. Cardiac fibroblast glycogen synthase kinase-3 beta regulates ventricular remodeling and dysfunction in ischemic heart. Circulation. 2014;130:419-430
18. Dewald O, Ren GF, Duerr GD, Zoerlein M, Klemm C, Gersch C, et al. Of mice and dogs: Species-specific differences in the inflammatory response following myocardial infarction. Am J Pathol. 2004;164:665-677
19. Robinson E, Cassidy RS, Tate M, Zhao Y, Lockhart S, Calderwood D, et al. Exendin-4 protects against post-myocardial infarction remodelling via specific actions on inflammation and the extracellular matrix. Basic Res Cardiol. 2015;110:20
20. Tuch BE. Stem cells--a clinical update. Aust Fam Physician. 2006;35:719-721
21. Mizuno H. Adipose-derived stem cells for tissue repair and regeneration: Ten years of research and a literature review. J Nippon Med Sch. 2009;76:56-66
22. Jeon YJ, Kim J, Cho JH, Chung HM, Chae JI. Comparative analysis of human mesenchymal stem cells derived from bone marrow, placenta, and adipose tissue as sources of cell therapy. J Cell Biochem. 2016;117:1112-1125
23. Kern S, Eichler H, Stoeve J, Kluter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006;24:1294-1301
24. Premaratne GU, Ma LP, Fujita M, Lin X, Bollano E, Fu M. Stromal vascular fraction transplantation as an alternative therapy for ischemic heart failure: Anti-inflammatory role. J Cardiothorac Surg. 2011;6:43
25. Yang D, Wang W, Li L, Peng Y, Chen P, Huang H, et al. The relative contribution of paracine effect versus direct differentiation on adipose-derived stem cell transplantation mediated cardiac repair. PLoS One. 2013;8:e59020
26. Chan JA, Krichevsky AM, Kosik KS. Microrna-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 2005;65:6029-6033
27. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, et al. Mir-15 and mir-16 induce apoptosis by targeting bcl2 (vol 102, pg 13944, 2005). P Natl Acad Sci USA. 2006;103:2464-2464
28. Wang Y, Ouyang M, Wang Q, Jian Z. Microrna-142-3p inhibits hypoxia/reoxygenationinduced apoptosis and fibrosis of cardiomyocytes by targeting high mobility group box 1. Int J Mol Med. 2016;38:1377-1386
29. Yin C, Wang X, Kukreja RC. Endogenous micrornas induced by heat-shock reduce myocardial infarction following ischemia-reperfusion in mice. FEBS Lett. 2008;582:4137-4142
30. Ye Y, Perez-Polo JR, Qian J, Birnbaum Y. The role of microrna in modulating myocardial ischemia-reperfusion injury. Physiol Genomics. 2011;43:534-542
31. Chistiakov DA, Sobenin IA, Orekhov AN, Bobryshev YV. Human mir-221/222 in physiological and atherosclerotic vascular remodeling. Biomed Res Int. 2015;2015:354517
32. Zhao JJ, Chu ZB, Hu Y, Lin J, Wang Z, Jiang M, et al. Targeting the mir-221-222/puma/bak/bax pathway abrogates dexamethasone resistance in multiple myeloma. Cancer Res. 2015;75:4384-4397
33. Zhang CZ, Zhang JX, Zhang AL, Shi ZD, Han L, Jia ZF, et al. Mir-221 and mir-222 target puma to induce cell survival in glioblastoma. Mol Cancer. 2010;9:229
34. Nakano K, Vousden KH. Puma, a novel proapoptotic gene, is induced by p53. Mol Cell. 2001;7:683-694
35. Sizemore GM, Pitarresi JR, Balakrishnan S, Ostrowski MC. The ets family of oncogenic transcription factors in solid tumours. Nat Rev Cancer. 2017;17:337-351
36. Zhan Y, Brown C, Maynard E, Anshelevich A, Ni W, Ho IC, et al. Ets-1 is a critical regulator of ang ii-mediated vascular inflammation and remodeling. J Clin Invest. 2005;115:2508-2516
37. Hao G, Han Z, Meng Z, Wei J, Gao D, Zhang H, et al. Ets-1 upregulation mediates angiotensin ii-related cardiac fibrosis. Int J Clin Exp Pathol. 2015;8:10216-10227
38. Hua P, Feng WG, Rezonzew G, Chumley P, Jaimes EA. The transcription factor ets-1 regulates angiotensin ii-stimulated fibronectin production in mesangial cells. Am J Physiol-Renal. 2012;302:F1418-F1429
39. Koh JY, Choi DW. Quantitative determination of glutamate mediated cortical neuronal injury in cell culture by lactate dehydrogenase efflux assay. J Neurosci Methods. 1987;20:83-90
40. Wu SZ, Tao LY, Wang JN, Xu ZQ, Wang J, Xue YJ, et al. Amifostine pretreatment attenuates myocardial ischemia/reperfusion injury by inhibiting apoptosis and oxidative stress. Oxid Med Cell Longev. 2017;2017:4130824
41. Hao M, Zhu S, Hu L, Zhu H, Wu X, Li Q. Myocardial ischemic postconditioning promotes autophagy against ischemia reperfusion injury via the activation of the nnos/ampk/mtor pathway. Int J Mol Sci. 2017;18
42. Wang H, Zhao YT, Zhang S, Dubielecka PM, Du J, Yano N, et al. Irisin plays a pivotal role to protect the heart against ischemia and reperfusion injury. J Cell Physiol. 2017
43. Timotin A, Pisarenko O, Sidorova M, Studneva I, Shulzhenko V, Palkeeva M, et al. Myocardial protection from ischemia/reperfusion injury by exogenous galanin fragment. Oncotarget. 2017;8:21241-21252
44. Wang JH, Su F, Wang SJ, Lu XC, Zhang SH, Chen D, et al. Cxcr6 deficiency attenuates pressure overload-induced monocytes migration and cardiac fibrosis through downregulating tnf-alpha-dependent mmp9 pathway. Int J Clin Exp Patho. 2014;7:6514-6523
45. Yang B, Yan P, Gong H, Zuo L, Shi Y, Guo J, et al. Tweak protects cardiomyocyte against apoptosis in a pi3k/akt pathway dependent manner. Am J Transl Res. 2016;8:3848-3860
46. Dhalla NS, Elmoselhi AB, Hata T, Makino N. Status of myocardial antioxidants in ischemia-reperfusion injury. Cardiovasc Res. 2000;47:446-456
47. Ceconi C, Cargnoni A, Pasini E, Condorelli E, Curello S, Ferrari R. Evaluation of phospholipid peroxidation as malondialdehyde during myocardial ischemia and reperfusion injury. Am J Physiol. 1991;260:H1057-1061
48. Kajstura J, Cheng W, Reiss K, Clark WA, Sonnenblick EH, Krajewski S, et al. Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats. Lab Invest. 1996;74:86-107
49. Aikawa R, Komuro I, Yamazaki T, Zou Y, Kudoh S, Tanaka M, et al. Oxidative stress activates extracellular signal-regulated kinases through src and ras in cultured cardiac myocytes of neonatal rats. J Clin Invest. 1997;100:1813-1821
50. Yang DZ, Wang W, Li LP, Peng YL, Chen P, Huang HY, et al. The relative contribution of paracine effect versus direct differentiation on adipose-derived stem cell transplantation mediated cardiac repair. Plos One. 2013;8
51. Perin EC, Dohmann HF, Borojevic R, Silva SA, Sousa AL, Mesquita CT, et al. Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation. 2003;107:2294-2302
52. Li T, Yan Y, Wang B, Qian H, Zhang X, Shen L, et al. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis. Stem Cells Dev. 2013;22:845-854
53. Zhou Y, Xu H, Xu W, Wang B, Wu H, Tao Y, et al. Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Res Ther. 2013;4:34
54. Menasche P, Hagege AA, Vilquin JT, Desnos M, Abergel E, Pouzet B, et al. Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J Am Coll Cardiol. 2003;41:1078-1083
55. Pittenger MF, Martin BJ. Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res. 2004;95:9-20
56. Mazo M, Hernandez S, Gavira JJ, Abizanda G, Arana M, Lopez-Martinez T, et al. Treatment of reperfused ischemia with adipose-derived stem cells in a preclinical swine model of myocardial infarction. Cell Transplant. 2012;21:2723-2733
57. Chen YT, Sun CK, Lin YC, Chang LT, Chen YL, Tsai TH, et al. Adipose-derived mesenchymal stem cell protects kidneys against ischemia-reperfusion injury through suppressing oxidative stress and inflammatory reaction. J Transl Med. 2011;9:51
58. Wolfers J, Lozier A, Raposo G, Regnault A, Thery C, Masurier C, et al. Tumor-derived exosomes are a source of shared tumor rejection antigens for ctl cross-priming. Nat Med. 2001;7:297-303
59. Mathivanan S, Fahner CJ, Reid GE, Simpson RJ. Exocarta 2012: Database of exosomal proteins, rna and lipids. Nucleic Acids Res. 2012;40:D1241-1244
60. Gnecchi M, Zhang Z, Ni A, Dzau VJ. Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res. 2008;103:1204-1219
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67113-
dc.description.abstract心血管疾病是已開發國家和發展中國家造成死亡的主要原因。心肌缺血/再灌流(ischemia/reperfusion, I / R)會導致心肌細胞損傷,包括細胞凋亡和纖維化。研究指出收集間質幹細胞(mesenchymal stem cell, MSC)的條件培養液(conditioned medium, CM),可有效減緩I/R後所造成的傷害,脂肪間質幹細胞(adipose-derived stem cell, ADSC)是間質幹細胞其中一種。本研究主旨為探討脂肪間質幹細胞的條件培養液(ADSC-CM)對於心肌缺血再灌流(I/R)的心肌凋亡和纖維化的調節機制。藉由結紮小鼠的心臟冠狀動脈左前降支(left anterior descending coronary artery, LAD)造成心肌缺血30分鐘後再灌流,作為心肌受損的(I/R組)動物模式,將ADSC-CM注射到缺血後的瘢痕和邊界中(I/R+CM組),並在術後3小時及3天取其心臟組織進行觀察。使用TUNEL染色計數凋亡細胞及運用免疫組織化學染色評估心肌凋亡及心臟纖維化情形。其結果顯示I/R會誘導心肌細胞凋亡及纖維化;而在ADSC-CM處理組顯著改善心肌凋亡和減少心臟纖維化情形。除此之外細胞凋亡相關蛋白PUMA在ADSC-CM處理組皆有表現量下降的情形,其中PUMA已被認為是miR221/222的目標基因,在RT-PCR的結果中可以發現,I/R組別中miR221/222表現量減少而在ADSC-CM處理組中有回升的情形。另外在miR221/222 knockout (KO) mice中,同樣觀察到ADSC-CM處理後會減緩細胞凋亡和細胞纖維化的現象。
在細胞模式方面,我們利用缺氧再灌氧環境誘導H9c2心肌細胞模擬動物缺血再灌流的傷害。缺氧再灌氧處理後H9c2心肌母細胞的確產生細胞凋亡和細胞纖維化的情形,而在ADSC-CM治療組當中與細胞凋亡及纖維化相關的蛋白表現有減少的狀況,我們認為ADSC-CM可減緩心肌細胞凋亡及纖維化的情形並保護心肌缺血後再灌流所造成的傷害且miR221/222參與在其中。
zh_TW
dc.description.abstractCardiovascular disorders is the leading cause of death in both developed and developing countries. Myocardial ischemia/reperfusion (I/R) leads cardiomyocyte injury, including apoptosis and fibrosis. The present study was aimed at determining the effect and regulatory mechanism of conditioned media from adipose-derived stem cells (ADSC-CM) on cardiac apoptosis and fibrosis. The mouse myocardial I/R model was established to induce by ligating the left anterior descending coronary artery for 30 min and then reperfusion for 3 h or for 3 days (I/R group). ADSC-CM treatment significantly reduced I/R-induced cardiomyocyte apoptosis by TUNEL staining. Moreover, the expression of the apoptosis related proteins, p53 upregulated modulator of apoptosis (PUMA), and the fibrosis-related proteins, fibronectin and collagen III, was significantly reduced in cardiomyocytes of I/R mice with ADSC-CM treatment. PUMA and Ets-1 have been reported to be the target genes of miR221/222. I/R operation dramatically decreased miR221/222 expression, which was increased with ADSC-CM treatment by RT-PCR. We also observed that cardiac I/R operation remarkably increased cell apoptosis and cell fibrosis in miR221/222 knockout (KO) mice, which was decreased with ADSC-CM.
We next established the in vitro cell model with H9c2 cells under hypoxia /reoxygenation (H/R) treatment. ADSC-CM increased cell viability of H/R-treated H9c2 cells by MTT assay. Furthermore, ADSC-CM decreased cell apoptosis by TUNEL assay. In addition, ADSC-CM treatment decreased H/R-induced PUMA and Ets-1 expression by Western blot assay. ADSC-CM decreased fibrosis-related proteins, collagen III and fibronectin expression by Western blot assay. Based on these above findings, ADSC-CM could protect myocardial I/R-induced injury against apoptosis and fibrosis.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:20:18Z (GMT). No. of bitstreams: 1
ntu-106-R04446008-1.pdf: 3592303 bytes, checksum: d59029b04553d013eb38e354d0b24295 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents口試委員審定書…………………………………………………………………………I
誌謝……………………………………………………………………………………...II
中文摘要……………………………………………………………………………….VI
英文摘要…………………………………………………………………………........VII
壹、 緒論………………………………………………………………………………1
一、 心臟的構造和功能…………………………………………………………1
二、 心肌缺血再灌流傷害(ischemia / reperfusion injury ,I/R injury)…………. 2
三、 心肌缺血再灌流傷害與細胞凋亡(apoptosis)的關係……………………...4
四、 心肌缺血再灌流傷害與細胞纖維化的關係(fibrosis)……………………..5
五、 脂肪幹細胞(Adipose-DerivedStem Cells, ADSCs)………………………...6
六、 微核糖核酸 (MicroRNAs, miRNAs, miRs)………………………………..7
七、 微核糖核酸-221/222(miR-221/222)與細胞凋亡和細胞纖維化的關係…...7
八、 研究動機………………………………………………………...…………..9
貳、 實驗材料………………………………………………………………………...10
一、 儀器設備………………………………………………………...…………10
二、 實驗材料與試劑…………………………………………...………………11
三、 實驗用溶液配方…………………………………………………...………15
參、 實驗方法………………………………………………………..……………….17
動物實驗 (In vivo)……………………………………...………………………17
一、 建立小鼠心臟缺血再灌流的動物模式……………………………….…..17
二、 乳酸去氫酵素 (lactate dehydrogenase, LDH)之測定………………….…18
三、 ADSC條件培養液(conditionedmedia)收集……………………..…..……18
四、 組織石蠟包埋………………………………………………………..….…19
五、 蘇木精-伊紅染色(hematoxlin-eosin staining)……………………….……19
六、 西方墨點法 (Weatern blotting)…………………………………..….……19
七、 Terminal deoxynucleotidyl transferase dUTP nick end labeling assay …...21
八、 即時定量聚合酶連鎖反應法測定mRNA表現………………..…..….…22
九、 免疫組織化學染色法……………………………………………..…….…23
體外細胞實驗 (In vitro) ……………………………………...………………………24
十、 人類成體脂肪幹細胞培養…………………………………………...……24
十一、 心肌母細胞培養………………….……………………………………25
十二、 細胞活性分析法……………………………………………….………25
十三、 流式細胞技術………………………………………………….………26
十四、 數據統計分析……………………………………………….…………26
肆、 實驗結果………………………………………………………………………...27
一、 在形態方面ADSC-CM改善心臟缺血再灌流後的傷害…………….…..27
二、 心臟缺血再灌流後誘導產生氧化壓力傷害及細胞受損的情形……...…27
三、 ADSC-CM可以減緩心臟缺血再灌流後的細胞凋亡之情形……………28
四、 ADSC-CM處理下缺血再灌流後的心臟組織降低PUMA表現……..…28
五、 利用ADSC-CM處理可改善心臟缺血再灌流後細胞纖維化情形…...…28
六、 使用ADSC-CM治療能提高心肌缺血再灌流後組織miR221/222表現.29
七、 miR221/222與心臟缺血再灌流後的細胞凋亡之間的關係…………..…29
八、 miR221/222與心臟缺血再灌流後的細胞纖維化之間關係………..……30
九、 ADSC-CM可以增加H9c2細胞在缺氧再灌氧的細胞生存率……….…31
十、 ADSC-CM減緩缺氧環境再灌氧下H9c2細胞細胞凋亡情形………….31
十一、 使用ADSC-CM減緩缺氧環境再灌氧下H9c2細胞之纖維化……..32
十二、 使用ADSC-CM會增加缺氧環境再灌氧下H9c2細胞miR221/222表現……………………...……………………………………………………32
十三、 ADSC-CM中miR221/222的表現……………………………………33
伍、 討論與結論………………………………………………...……………………34
陸、 參考文獻………………………………………………………………...………37
柒、 附圖……………………………………………………………………………...43
一、 ADSC-CM對心臟缺血再灌流後形態的影響……………………………44
二、 ADSC-CM對心臟缺血再灌流動物模式中心臟細胞損傷的影響………45
三、 ADSC-CM對心臟缺血再灌流後細胞凋亡的影響………………………46
四、 ADSC-CM治療缺血再灌流後的心臟組織之PUMA表現情形……..…48
五、 ADSC-CM處理後對心臟缺血再灌流的細胞纖維化之影響……………50
六、 心臟缺血再灌流後組織miR-221/222表現之情形………………………51
七、 miR221/222與心臟缺血再灌流後的細胞凋亡之間的關係……..………54
八、 ADSC-CM處理後影響心臟缺血再灌流後細胞纖維化之情形表現……57
九、 以細胞活性分析法觀察缺氧環境再灌氧對於H9c2細胞存活率的影響58
十、 在H/R處理下及ADSC-CM對細胞凋亡的改變情形……………..……60
十一、 使用ADSC-CM於缺氧環境再灌氧下H9c2細胞之纖維化之影響..62
十二、 使用ADSC-CM在缺氧環境下H9c2細胞miR221/222 之表現...…63
十三、 ADSC-CM中miR221/222 之表現………..…………………………64
dc.language.isozh-TW
dc.subject心肌缺血/再灌流zh_TW
dc.subject脂肪間質幹細胞條件培養液zh_TW
dc.subject細胞凋亡zh_TW
dc.subject纖維化zh_TW
dc.subjectmiR221/222zh_TW
dc.subjectIschemia/Reperfusionen
dc.subjectADSC-CMen
dc.subjectapoptosisen
dc.subjectfibrosisen
dc.subjectmiR221/222en
dc.title探討脂肪幹細胞的條件培養液對心肌缺血再灌流
所引發心肌凋亡及纖維化之影響
zh_TW
dc.titleThe effects of conditioned medium from
adipose-derived stem cells on ischemia/reperfusion-induced cardiac apoptosis and fibrosis
en
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee江美治,王懷詩,林茂欣
dc.subject.keyword心肌缺血/再灌流,脂肪間質幹細胞條件培養液,細胞凋亡,纖維化,miR221/222,zh_TW
dc.subject.keywordIschemia/Reperfusion,ADSC-CM,apoptosis,fibrosis,miR221/222,en
dc.relation.page64
dc.identifier.doi10.6342/NTU201702988
dc.rights.note有償授權
dc.date.accepted2017-08-11
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept解剖學暨細胞生物學研究所zh_TW
Appears in Collections:解剖學暨細胞生物學科所

Files in This Item:
File SizeFormat 
ntu-106-1.pdf
  Restricted Access
3.51 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved