Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67089
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張宏鈞
dc.contributor.authorChien-Ying Huangen
dc.contributor.author黃建穎zh_TW
dc.date.accessioned2021-06-17T01:19:36Z-
dc.date.available2017-08-24
dc.date.copyright2017-08-24
dc.date.issued2017
dc.date.submitted2017-08-11
dc.identifier.citation[1] Albani, M., and P. Bernardi, “A numerical method based on the discretization of Maxwell equations in integral form,” IEEE Trans. Microwave Theory Tech., vol. 22, pp. 446–450, 1974.
[2] Berenger,J.P.,“Aperfectlymatchedlayerfortheabsorptionofelectromagnetic waves,” J. Comput. Phys., vol. 114, pp. 185–200, 1994.
[3] Byun, K. M., and S. J. Kim, “Design study of highly sensitive nanowire- enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis,” Opt. Express, vol. 13, pp. 3737–3742, 2005.
[4] Courant, R., K. Friedrichs, and H. Lewy, “Uber die partiellen differenzengle- ichungen der mathematischen physik,” Math. Ann., vol. 100, pp. 32–74, 1928.
[5] Drude, P., “Zur elektronentheorie der metalle,” Ann. Phys., vol. 1, pp. 566–613, 1900.
[6] Haes, A. J., S. Zou, G. C. Schaltz, and R. P. Vna Duyne, “Nanoscale optical biosensor: Short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles,” J. Phys. Chem. B, vol. 108, pp. 6961– 6968, 2004.
[7] Han, S., L. Cong, H. Lin, B. Xiao, H. Yang, and R. Singh, “Tunable elec- tromagnetically induced transparency in coupled three-dimensional split-ring- resonator metamaterials,” Sci. Rep., vol. 6, 20801, 2016.
[8] Harrington, R.F., “The method of moments in electromagnetics,” J. Electro- magn. Wave Appl., vol. 1, pp. 181–200, 1987.
[9] Holland, R., and K. S. Cho, Alternating-direction implicit differencing of Maxwell’s equations: 3D results. Computer Sciences Corp., Albuquerque, NM, Technical Report to Harry Diamond Labs., Adelphi, MD, Contract DAAL02- 85-C-0200, June 1, 1986.
[10] Hsu, W. L., P. C. Wu, J. W. Chen, T. Y. Chen, B. H. Cheng, W. T. Chen, Y. W. Huang, C.Y. Liao, G. Sun, and D. P. Tsai, “Vertical split-ring resonator based anomalous beam steering with high extinction ratio,” Sci. Rep., vol. 5, 11226, 2015.
[11] Johnson, P. B., and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B, vol. 6, pp. 4370–4379, 1972.
[12] Kelley, D. F., and R. J. Luebbes, “Piecewise linear recursive convolution for dispersive media using FDTD,” IEEE Trans. Antennas Propagat., vol. 44, pp. 792–797, 1996.
[13] Kern, A. M., and O. J. F. Martin, “Surface integral formulation for 3D simula- tions of plasmonic and high permittivity nanostructures,” J. Opt. Soc. Am. A, vol. 26, pp. 732–740, 2009.
[14] Kernighan, B. W., and D. M. Ritchie, The C programming Language, 2nd Edition. Prentice-Hall, 1988.
[15] Kriegler, C. E., M. S. Rill, S. Linden, and M. Wegener, “Bianisotropic photonic metamaterials,” IEEE J. Sel. Top. Quant. Electron. vol. 16, pp. 367 –375, 2010.
[16] Lee, K. L., C. C. Chang , M. L. You , M. Y. Pan, and P. K. Wei, “Enhancing the surface sensitivity of metallic nanostructures using oblique-angle-induced Fano resonances,” Sci. Rep., vol. 6, 33126, 2016.
[17] Liu, Q. H., “The pseudospectral time-domain (PSTD) method: A new algo- rithm for solutions of Maxwell’s equations,” Proc. IEEE Antennas Propag. Soc. Int. Symp., vol. 1, pp. 122–125, 1997.
[18] Liu, N., L. Langguth, T. Weiss, J. Kstel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater., vol. 8, pp. 758–762 , 2009.
[19] Lorentz, H. A. , The Theory of Electrons. Leipzig: Teubner, 1909.
[20] Luk’yanchuk, B., N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater, vol. 9, pp. 707–715 ,2010.
[21] Maier, S. A. , P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, ”Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater, vol. 2, pp. 229–232 ,2003.
[22] Maier, S. A., Plasmonics: Fundamentals and Applications. Springer: New York, 2007.
[23] Mie, G., “Beitra ̈ge zur optik tru ̈ber Medien, speziell kolloidaler Metallo ̈sungen,” Annalen der Physik, vol. 330, pp. 377–445, 1908.
[24] Okoniewski, M., M. Mrozowski, and M. A. Stuchly, “Simple treatment of multi- term dispersion in FDTD,” IEEE Microwave Guided Wave Lett., vol. 7, pp. 121–123, 1997.
[25] Persson, B. N. J., and A. Liebsch, “Optical-peroperties of two-dimensional systems of randomly distributed particles,” Phys. Rev. B, vol. 28, no. 8, pp. 4247–4254, 1983.
[26] Roden, J. A., and S. D. Gedney, “Convolutional PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media,” Microwave Opt. Technol. Lett., vol. 27, pp. 334–339, 2000.
[27] Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with mimultaneously negative permeability and permit- tivity,” Phys. Rev. Lett., vol. 84, pp. 4184–4187, 2000.
[28] Smith, D. R., S. Schultz, P. Markos and, C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B, vol. 65, 195104, 2002.
[29] Sundaramurthy, A., P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett., vol. 6, pp. 355–360, 2006.
[30] Sepu ́lveda, B., P. C. Angelome ́b, M. Lechugaa, and M. Liz-Marza ́nb, “LSPR- based nanobiosensors,” Nano Today, vol. 4, pp. 244–251, 2009.
[31] Taflove, A., and M. Brodwin, Computation Electromagnetics: The Finite- Difference Time-Domain Method. Norwood, MA: Artech House, 2005.
[32] Tobing, L. Y. M., L. Tjahjana, D. H. Zhang, Q. Zhang, and Q. Xiong. “Deep subwavelength fourfold rotationally symmetric split-ring-resonator metamateri- als for highly sensitive and robust biosensing platform,” Sci. Rep., vol. 3, 2437, 2013.
[33] Weiland, T., “A discretization model for the solution of Maxwell’s equations for six-component fields,” Electron. Commun. (AEU), vol. 31, pp. 116–120, 1977.
[34] Wu, P. C., W. T. Chen, K.-Y. Yang, C. T. Hsiao, G. Sun, A. Q. Liu, N. I. Zheludev, and D. P. Tsai, “Magnetic plasmon induced transparency in three- dimensional metamolecules,” Nanophoton, vol. 1, pp. 131–138 ,2012.
[35] Wu, P. C., G.Sun, W. T. Chen, K.-Y. Yang, Y.-W. Huang, Y.-H. Chen, H. L. Huang, W.-L. Hsu, H. P. Chiang, D. P. Tsai, ”Vertical split-ring resonator based nanoplasmonic sensor,” Appl. Phys. Lett., vol. 105, 033105, 2014.
[36] Xu, H., E. J. Bjerneld, M. Kall, and L. Borjesson, “Spectroscopy of single hemoglobin molecules by Surface Enhanced Raman Scattering,” Phys. Rev. Lett., vol. 83, pp. 4357–4360, 1999.
[37] Yee, K., “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propagat., vol. 14, pp. 302–307, 1966.
[38] Zhang, W., L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett., vol. 10, pp. 1006–1011, 2010.
[39] Zienkiewicz, O. C., and Y. K. Cheung, “Finite elements in the solution of field problems,” The Engineer, vol. 220, pp. 507–510, 1965.
[40] Zhou, J. F., O. L., T. Koschny, and C. M. Soukoulis, “Magnetic and electric excitations in split ring resonators,” Opt. Express, vol. 15, pp. 17881–17890, 2007
[41] http://www.ansys.com
[42] http://www.comsol.com
[43] http://www.home.agilent.com
[44] http://www.cst.com
[45] http://www.lumerical.com
[46] http://www.remcom.com
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67089-
dc.description.abstract本論文中,我們利用 C 語言建構了一個平行化三維時域有限差分模擬器,並利用多台電腦透過訊息傳遞介面協定來加速模擬。
我們利用這個自行建構的平行化時域有限差分模擬器來模擬奈米結構,討論其耦合現象,並應用於感測。第一部份,我們研究直立型及平躺型開口環形共振腔的共振機制並將之應用於感測,其中感測器的感測能力可由感測強度以及品質因素兩個量度作為標準,並且發現,透過增加結構的週期能夠有效提升品質因素,其中平躺環形共振 腔可達到品質因素 15.54 而直立環形共振腔更可達 37.71。直立結構 由於多了磁場直接耦合的效應,會使得感測效率勝過平躺結構,但由於製程的困難性,我們致力於增加平躺式結構的品質因素。因此於第二部分,我們探討平躺型結構的奈米結構之耦合現象,其中包括結構 的非對稱性及耦合強度對於耦合效應的影響,並將耦合結構應用於感測。透過我們的設計,在七重奈米柱的結構我們能夠將品質因素提升 到 26.55,對比最原始的平躺型開口環形共振腔來說,有非常顯著的提升。
zh_TW
dc.description.abstractIn this thesis, a parallelized three-dimensional (3-D) finite-difference time-domain (FDTD) numerical simulator by using the message passing interface (MPI) library code in C language is developed and applied to the following topics. In the first part, we systemically investigate the mechanism of resonances of split-ring-resonators (SRRs) and apply them to sensing applications. We analyze two types of SRRs, vertical SRRs (VSRRs) and planar SRRs (PSRRs), and investigate the sensing performance by sensitivity and figure of merit (FOM) for both types of SRRs. We find out that the FOM can be effectively enhanced by increasing the period of the structure and FOM = 15.34 for PSRRs and FOM = 37.71 for VSRRs can be achieved. The sensing performance of VSRRs surpasses PSRRs because of the bianisotropic effect. However, the planar structures are less difficult in fabrication, and thus we further study the planar structures to see if we can enhance their sensing performance. In the second part, we investigate coupling effects of planar nanostructures, including PSRRs and nano-rods. We investigate the coupling interaction between plasmonic nanostructures by analyzing the asymmetry effect and coupling strength of structures and apply them to sensing applications. By delicately utilizing the coupling effects, in a seven nano-rod array case, FOM = 26.55 is achieved, which is a great improvement compared to original PSRR cases.en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:19:36Z (GMT). No. of bitstreams: 1
ntu-106-R04941066-1.pdf: 17827565 bytes, checksum: 7ccb7a5314760d1cc7492eb4be501bc8 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents1 Introduction 1
1.1 Motivations ................................ 1
1.2 Introduction to Computational Electromagnetics . . . . . . . . . . . . 2
1.3 ChapterOutline.............................. 4
2 The Finite-Difference Time-Domain Method 6
2.1 Introduction................................ 6
2.2 TheCourantStabilityLimit....................... 8
2.3 TheTotal-field/Scattered-fieldTechnique . . . . . . . . . . . . . . . 10
2.4 Convolutional Perfectly Matched Layer (CPML) . . . . . . . . . . . . 10
2.5 PeriodicBoundaryConditions(PBCs) ................. 13
2.6 ModelingofDispersiveMaterials .................... 14
2.6.1 TheDrudeModel......................... 14
2.6.2 TheLorentzModel........................ 16
2.6.3 The Auxiliary Differential Equation (ADE) Method . . . . . . 16
2.7 ParallelizedFDTDMethod ....................... 20
2.8 Validation of FDTD Simulated Results with Some Analytic Solutions 20
2.8.1 CalculationofCrossSections .................. 21
2.8.2 PhasorCalculation ........................ 22
2.8.3 Reflectance Calculation for Periodic Structure . . . . . . . . . 23
3 Analysis of Split-Ring Resonators Based Nano-Structures for Sens- ing Applications 31
3.1 Overview.................................. 31
3.2 The Method to Retrieve Effective Meta-Material Parameters . . . . . 32
3.3 ResonancesofSplit-RingResonators .................. 33
3.3.1 ModelingofPSRRs........................ 34
3.3.2 ModelingofVSRRs........................ 35
3.3.3 DiscussionofSRRResonances.................. 36
3.4 TheSensingPerformanceofSRRs.................... 37
3.4.1 ThePerformanceoftheSensitivity . . . . . . . . . . . . . . . 38
3.4.2 ThePerformanceoftheFOM .................. 39
4 Coupling Effects of Nano-Scale Metal Structures for Sensing Ap- plications 68
4.1 Overview.................................. 68
4.2 AsymmetricPSRRs............................ 69
4.2.1 TheSymmetryBreakinginCoupledPSRRs . . . . . . . . . . 69
4.2.2 TheCouplingStrengthofAPSRRs ............... 72
4.3 MultipleNano-RodArrays........................ 73
4.3.1 TheSingle-RodArray ...................... 74
4.3.2 The Two-RodArray ....................... 74
4.3.3 The Three-RodArray ...................... 75
4.3.4 The Four-RodArray ....................... 75
4.3.5 TheFive-RodArray ....................... 76
4.3.6 TheSeven-RodArray ...................... 76
5 Conclusion 96
Bibliography 99
dc.language.isoen
dc.subject電漿子奈米結構zh_TW
dc.subject時域有限差分法zh_TW
dc.subject耦合效應zh_TW
dc.subject奈米感測器zh_TW
dc.subjectnano-sensorsen
dc.subjectplasmonic nanostructuresen
dc.subjectcoupling effectsen
dc.subjectfinite-difference time-domain methoden
dc.title以三維時域有限差分法研究電漿子奈米結構之耦合效應及感測應用zh_TW
dc.title3-D FDTD Studies of Coupling Effects of Plasmonic Nanostructures for Sensing Applicationsen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊宗哲,陳瑞琳,魏培坤
dc.subject.keyword時域有限差分法,電漿子奈米結構,耦合效應,奈米感測器,zh_TW
dc.subject.keywordfinite-difference time-domain method,plasmonic nanostructures,coupling effects,nano-sensors,en
dc.relation.page104
dc.identifier.doi10.6342/NTU201703062
dc.rights.note有償授權
dc.date.accepted2017-08-11
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
17.41 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved