請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67080
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 鄭榮和(Jung-Ho Cheng) | |
dc.contributor.author | Che-Wei Li | en |
dc.contributor.author | 李哲緯 | zh_TW |
dc.date.accessioned | 2021-06-17T01:19:21Z | - |
dc.date.available | 2022-08-28 | |
dc.date.copyright | 2017-08-28 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-08-11 | |
dc.identifier.citation | [1] 世界戰甲車發展歷史 http://museum.mnd.gov.tw/Publish.aspx?cnid=1458&p=19916
[2] 裝甲車分類 https://zh.wikipedia.org/wiki/%E5%9D%A6%E5%85%8B [3] Piranha系列輪型裝甲車簡介http://www.mdc.idv.tw/mdc/army/pirinha.htm [4] 瑞士MOWAG Piranha III型http://www.armyrecognition.com/wheeled_armoured_vehicles_swiss_switzerland_army_u/piranha_3_iii_c_wheeled_armoured_vehicle_personnel_carrier_data_sheet_specifications_pictures.html [5] 美國Stryker八輪裝甲車https://en.wikipedia.org/wiki/Stryker [6] 中華人民共和國武警六輪甲車 https://zh.wikipedia.org/wiki/%E8%A3%85%E7%94%B2%E8%BD%A6 [7] International Institute for Strategic Studies, The Military Balance, vol. 97, pp. 12-198, 1997. [8] International Institute for Strategic Studies, The Military Balance, vol. 117, pp. 27-350, 2017. [9] 楊溫利, “輪甲旋風?審視箭在弦上的雲豹甲車計畫,” 尖端科技軍事雜誌, 第314期10月號, 第33頁, 2010 [10] W. Bauer, Hydropneumatic Suspension Systems, Springer, Heidelberg, 2011. [11] 梁卓中, 鄧作樑, 楊士賢, 林憲聰, “重型輪型車輛液氣壓式懸吊系統之振動分析,” 車輛工程學刊, 第9期, 第1-24頁, 2012 [12] 工業技術研究院https://www.itri.org.tw/chi/ [13] 電腦輔助設計軟體SolidWorks https://zh.wikipedia.org/wiki/SolidWorks [14] 有限元素前處理軟體HyperMesh http://www.simutech.com.tw/product-simulia-side-nav02.php?cid=5&kid=8 [15] 有限元素分析軟體Abaqus http://www.simutech.com.tw/product-simulia-side-nav02.php?cid=1&kid=25 [16] 機構分析軟體ADAMS http://www.mscsoftware.com/product/adams [17] 非參數最佳化分析軟體Tosca http://www.simutech.com.tw/product-simulia-side-nav02.php?cid=1&kid=26 [18] 程序整合暨設計最佳化工具Optimus http://www.cybernet-ap.com.tw/zh.php?m=363&t=67 [19] 絕熱過程理想氣體方程式 https://zh.wikipedia.org/wiki/%E7%BB%9D%E7%83%AD%E8%BF%87%E7%A8%8B [20] 伯努力方程式 https://zh.wikipedia.org/wiki/%E4%BC%AF%E5%8A%AA%E5%88%A9%E5%AE%9A%E5%BE%8B [21] G. W. Jackson, “Fundamentals of the Direct Acting Shock Absorber,” National Passenger Car Body and Materials Meeting, Detroit, Michigan, 1959. [22] L. Meirovitch, Elements of Vibration Analysis, 1st Ed, McGraw-Hill Book Company, New York (Eleventh Printing), 1985. [23] B. H. Tongue, Principles of Vibration, 2nd Ed, Oxford University Press, 2002. [24] S. S. Rao, Mechanical Vibration, 5th Ed, SI Units, Prentice Hall, 2011. [25] UltraLight Steel Auto Body Consortium, UltraLight Steel Auto Body Final Report, 1st Ed, American Iron and Steel Institute, 1998. [26] Y. Kitagawa and C. Pal, “Evaluate of Vehicle Body Stiffness and Strength for Car to Car Compatibility,” SAE International Body Engineering Conference, Detroit, Michigan, 2001. [27] M. Cavazzuti and L. Splendi, “Structural Optimization of Automotive Chassis: Theory, Set up, Design,” Problèmes Inverses, Contrôle et Optimisation de Formes, Paris, France, 2012. [28] Porsche Engineering Services, inc. “UltraLight Steel Auto Body Final Engineering Report: Testing and Results,” 1998. [29] H. Heisler, Advanced Vehicle Technology, 2nd Ed, Butterworth-Heinemann, 2002. [30] W. B. Riley and A. R. George, “Design, Analysis and Testing of a Formula SAE Car Chassis,” Motorsports Engineering Conference & Exhibition, Indianapolis, Indiana, 2002. [31] R. P. Singh, “Structural Performance Analysis of Formula SAE Car,” Jurnal Mekanikal, vol. 31, pp. 46-61, 2010. [32] O. Danielsson, “Influence of Body Stiffness on Vehicle Dynamics Characteristics in Passenger Cars,” Master Thesis, Department of Applied Mechanics, 2015. [33] A. D. Gupta, J. M. Santiago and C. Meyer, “Comparison of Computational and Experimental Modal Analyses of an Armored Vehicle Hull with Multiple Access Openings,” Computers & Structures, vol. 56, no.2/3, pp. 411-414, 1995. [34] A. D. Gupta, “Evaluation of a Fully Assembled Armored Vehicle Hull–turret Model Using Computational and Experimental Modal Analyses,” Computers and Structures, vol. 72, no. 1–3, pp. 177-183, 1999. [35] 黃子瑄, “八輪甲車車體之結構剛性與強度分析,” 國立屏東科技大學車輛工程所碩士論文, 2012 [36] S. H. Lin, C. G. Cheng, C. Y. Liao and Y. F. Shan, “CAE Analyses for Suspension System and Full Vehicle under Durability Road Load Conditions,” SAE World Congress & Exhibition, Detroit, Michigan, 2007. [37] 陳思財, “二自由度獨立懸吊系統機構探討,” 逢甲大學材料與製造工程所碩士論文, 2007 [38] E. H. Choi, J. B. Ryoo, J. R. Cho and O. K. Lim, “Optimus Suspension Unit Design for Enhancing the Mobility of Wheeled Armored Vehicles,” Journal of Mechanical Science and Technology, vol. 24, no. 1, pp. 323-330, 2010. [39] 陳柏豪, “獨立式懸吊機構之空間運動分析,” 國立臺北科技大學車輛工程系碩士論文, 2012 [40] 黃粲清, “八輪車輛越野效能分析,” 國立臺灣大學機械工程學研究所碩士論文, 2015 [41] 王喬智, “載重車輛懸吊系統之動態模擬與分析,” 國防大學中正理工學院造船工程研究所碩士論文, 2004 [42] 鄭俊誠, 吳英正, 林達偉, 張永源, 鍾允睿, “液氣式承載多輪獨立懸吊系統之動態模擬與分析,” 中國機械工程學會第二十四屆全國學術研討會論文集, 2007 [43] 謝坤儒, “多軸車輛操控安全性模擬與分析,” 國立雲林科技大學機械工程研究所碩士論文, 2008 [44] 陳英廷, “輪型重車液氣壓式懸吊系統之動態與結構分析,” 國立臺灣大學機械工程學研究所碩士論文, 2015 [45] G. Verros, S. Natsiavas and C. Papadimitriou, “Design Optimization of Quarter-car Models with Passive and Semi-active Suspensions under Random Road Excitation,” Journal of Vibration and Control, vol. 11, pp. 581-606, 2005. [46] N. Eslaminasab, “Development of a Semi-active Intelligent Suspension System for Heavy Vehicles,” Ph.D. Thesis, University of Waterloo, Canada, 2008. [47] M. J. Griffin, “A Comparison of Standardized Methods for Predicting the Hazards of Whole-Body Vibration and Repeated Shocks,” Journal of Sound and Vibration, vol. 215, pp. 883-914, 1998. [48] P. E. Uys, P. S. Els and M. J. Thoresson, “Criteria for Handling Measurement,” Journal of Terramechanics, vol. 43, pp. 43-67, 2006. [49] S. Lajqi and S. Pehan, “Designs and Optimizations of Active and Semi-Active Non-linear Suspension Systems for a Terrain Vehicle,” Journal of Mechanical Engineering, vol. 58, no. 12, pp.732-743, 2012. [50] A. Kuznestov, M. Mammadov, I. Sultan and E. Hajilarov, “Optimization of Improved Suspension System with Inerter Device of the Quarter-Car Model in Vibration Analysis,” Archive of Applied Mechanics, vol. 81, pp. 1427-1437, 2011. [51] R. G. Todkar, “Design, Development and Testing of an Air Damper to Control the Resonant Response of a SDOF Quarter-Car Suspension System,” Modern Mechanical Engineering, vol. 1, pp. 84-92, 2011. [52] C. V. Suciu, T. Tobiishi and R. Mouri, “Modeling and Simulation of a Vehicle Suspension with Variable Damping versus the Excitation Frequency,” Journal of Telecommunications and Information Technology, vol. 1, pp. 83-89, 2012. [53] A. Parekh, S. B. Kumbhar and S. G. Joshi, “Transmissibility Analysis of a Car Driver’s Seat Suspension System with an Air Bellow Type Damper,” International Journal on Recent Technologies in Mechanical and Electrical Engineering, vol. 1, pp. 12-19, 2014. [54] 黃朝琴, “車姿對底盤運動性能之影響,” 財團法人車輛研究試驗中心, 2010 [55] 江承舜, “後置電池式電動車動態性能模擬分析與評估,” 財團法人車輛研究試驗中心,2010 [56] 胡惠文, 黃子瑄, 楊仲豪, 宋俊卿, 蘇仁寶, “八輪甲車結構有限元素模型驗證,” 第21屆國防科技學術研討會, 桃園, 2012 [57] J. Y. Wong, Theory of Ground Vehicles, 4th Ed, John Wiley & Sons, New York, 2008 [58] 吳隆佃, 莊士誠, “金屬材料銲接程序規範書及其檢定-銲接程序試驗-第1部:鋼的電弧銲接及氣銲、鎳及鎳合金的電弧銲接,” 銲接與切割, 第24卷, 第3期, 第28-42頁, 2014 [59] D. M. Robledo, J. A. Suárez Gómez and J. E. Giraldo Barrada, “Development of a Welding Procedure for MIL A 46100 Armor Steel Joints Using Gas Metal Arc Welding,” Dyna, vol. 78, no. 168, pp. 65-71, Medellín, Agosto, 2011. [60] O. M. Sanusi and J. O. Akindapo, “Ballistic Performance of a Quenched and Tempered Steel Against 7.62mm Calibre Projectile,” Nigerian Journal of Technology, vol. 34, no. 2, pp. 309-313, 2015. [61] ASM International, ASM Handbook: Properties and Selection: Irons, Steels, and High-Performance Alloys, vol. 1, pp.673-688, 1990. [62] 徐業良, 工程最佳化設計, 宏明圖書有限公司, 1997 [63] M. P. Bendsoe and O. Sigmund, Topology Optimization: Theory, Method, and Applications, Springer, New York, 2003. [64] J. C. Dixon, The Shock Absorber Handbook, 2nd Ed, John Wiley & Sons, England, 2007. [65] A. Buda, A. Jarynowski, “Life-Time of Correlation and Its Application,” vol. 1, pp. 5-21, Wydawnictwo Niezalezne, Wroclaw, 2010. [66] J. Cohen, Statistical Power Analysis for the Behavioral Sciences, 2nd Ed, L. Erlbaum Associates, 1998. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67080 | - |
dc.description.abstract | 本研究以輪型重車的液氣壓式懸吊系統與車體結構為研究對象,建立一套優化設計流程來針對車輛操控性與舒適性進行懸吊系統參數設計,以及對車體結構進行優化設計使達到強度需求並提升結構剛性。首先依據現有的測試平台進行實驗的規劃,並由測試結果來驗證與修正模型,接續透過懸吊系統的振動分析、車體結構的靜動態結構分析以及整車動態模擬來探討原始設計之性能。藉由整車動態模擬了解車輛在行駛過程中的動態響應,並發現在特定負載條件下可能會對部分車體結構產生破壞。因此本研究藉由結構最佳化(Structural optimization)方法對原先可能會造成破壞的車體結構進行優化,達到同時滿足強度與剛性提升的目標需求。另外針對車輛所行駛的道路環境與使用需求,本研究嘗試對現行的懸吊系統進行參數設計,使車輛在相同運行條件下擁有較佳的舒適性與操控性能,進而提升輪型重車的承載性能並提供作為懸吊系統性能改善之依據。 | zh_TW |
dc.description.abstract | In this thesis, the hydro-pneumatic suspension system and body structure of the wheeled heavy vehicle are studied. Through the establishment of a set of optimization design process, to design the parameters of the suspension system for vehicle handling and comfort, as well as to optimize the design of the body structure to achieve strength requirements and enhance structural rigidity. First, according to the existing test platform to plan experiments, and then the test results are used to verify and modify the model. And, the performance of the original design are discussed by the simulation analysis. Next, through the vehicle dynamic simulation to get the vehicle dynamic response during the driving process, and found that part of the body structure may be damage under specific load conditions. Therefore, this thesis uses structural optimization method to optimize the structure of the vehicle body, let the structural strength and rigidity are both meet the requirements. In addition, this thesis designs suitable suspension parameters for different road environment and the operation needs of the vehicle, which make the vehicle in the same operating conditions to be more comfortable and with high handling performance, improving the carrying capacity of the wheeled heavy vehicles. And, the design parameters provide the basis for improving performances of the suspension. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T01:19:21Z (GMT). No. of bitstreams: 1 ntu-106-R04522540-1.pdf: 8059577 bytes, checksum: 6f8f5dda668026890e7dd7865b9a0dfb (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 致謝 I
摘要 II ABSTRACT III 目錄 IV 圖目錄 VII 表目錄 XI 符號說明 XIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 7 1.3 論文架構 9 1.4 研究工具介紹 11 第二章 理論背景與文獻回顧 13 2.1 液氣壓式避震器 13 2.1.1 液氣壓筒構造與組成 13 2.1.2 液氣壓筒彈簧特性方程式 17 2.1.3 液氣壓筒阻尼特性方程式 17 2.2 振動學理論 18 2.2.1 振動學基本公式 18 2.2.2 自由振動與自然頻率 20 2.3 文獻回顧 24 2.3.1 車體結構設計 24 2.3.2 懸吊系統設計 29 2.3.3 小結 35 第三章 車體結構分析與優化 37 3.1 承載系統模型建立 37 3.1.1 車體結構模型建立 37 3.1.2 車體結構模型驗證 39 3.1.3 懸吊系統模型建立 43 3.1.4 懸吊系統模型驗證 46 3.1.5 承載系統模型建立 51 3.2 車體結構原始設計分析 53 3.2.1 負載與邊界條件設定 53 3.2.2 車體結構設計分析 56 3.3 車體結構設計優化 60 3.3.1 工程最佳化設計 60 3.3.2 定義結構優化問題 63 3.3.3 優化結果分析與比較 67 3.4 小結 70 第四章 懸吊系統分析與參數設計 71 4.1 單輪液氣式懸吊動態測試 71 4.1.1 實驗架設 71 4.1.2 測試項目 75 4.2 懸吊系統模型建立與驗證 75 4.2.1 單輪液氣式懸吊系統模型建立 75 4.2.2 懸吊系統模型驗證 81 4.3 懸吊系統原始設計分析 90 4.3.1 模擬情境說明 90 4.3.2 負載與邊界條件 91 4.3.3 模擬結果 92 4.4 懸吊系統參數優化設計 93 4.4.1 參數最佳化軟體Optimus 93 4.4.2 參數優化設計模型建立與設定 94 4.4.3 參數敏感度分析 98 4.4.4 參數優化結果 100 4.5 小結 103 第五章 成果總結與未來方向 105 5.1 成果總結 105 5.2 未來方向 106 參考文獻 107 附錄 112 | |
dc.language.iso | zh-TW | |
dc.title | 輪型重車液氣壓式懸吊系統與車體結構之分析與優化 | zh_TW |
dc.title | Analysis and Optimization of Hydro-Pneumatic Suspension System and Body Structure for a Wheeled Heavy Vehicle | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 劉霆(Tyng Liu),單秋成(Chow-Shing Shin) | |
dc.subject.keyword | 液氣壓式懸吊,車體結構,振動學,動態分析,結構分析,有限元素,結構優化, | zh_TW |
dc.subject.keyword | hydro-pneumatic suspension,body structure,vibration,dynamic analysis,structural analysis,finite element,structural optimization, | en |
dc.relation.page | 117 | |
dc.identifier.doi | 10.6342/NTU201701992 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-08-11 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 7.87 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。