Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67066
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor莊雅惠
dc.contributor.authorTeng-Yuan Weien
dc.contributor.author韋登元zh_TW
dc.date.accessioned2021-06-17T01:18:56Z-
dc.date.available2027-12-31
dc.date.copyright2017-09-14
dc.date.issued2017
dc.date.submitted2017-08-11
dc.identifier.citation1. Ermann, J. and C.G. Fathman, Autoimmune diseases: genes, bugs and failed regulation. Nat Immunol, 2001. 2(9): p. 759-61.
2. Wahren-Herlenius, M. and T. Dorner, Immunopathogenic mechanisms of systemic autoimmune disease. Lancet, 2013. 382(9894): p. 819-31.
3. Yang, J., et al., Th17 and natural Treg cell population dynamics in systemic lupus erythematosus. Arthritis Rheum, 2009. 60(5): p. 1472-83.
4. Shivakumar, S., G.C. Tsokos, and S.K. Datta, T cell receptor alpha/beta expressing double-negative (CD4-/CD8-) and CD4+ T helper cells in humans augment the production of pathogenic anti-DNA autoantibodies associated with lupus nephritis. J Immunol, 1989. 143(1): p. 103-12.
5. Crispin, J.C., et al., Expanded double negative T cells in patients with systemic lupus erythematosus produce IL-17 and infiltrate the kidneys. J Immunol, 2008. 181(12): p. 8761-6.
6. Futatsugi-Yumikura, S., et al., Pathogenic Th2-type follicular helper T cells contribute to the development of lupus in Fas-deficient mice. Int Immunol, 2014. 26(4): p. 221-31.
7. Bonelli, M., et al., Quantitative and qualitative deficiencies of regulatory T cells in patients with systemic lupus erythematosus (SLE). Int Immunol, 2008. 20(7): p. 861-8.
8. Vargas-Rojas, M.I., et al., Quantitative and qualitative normal regulatory T cells are not capable of inducing suppression in SLE patients due to T-cell resistance. Lupus, 2008. 17(4): p. 289-94.
9. Smolen, J.S., D. Aletaha, and I.B. McInnes, Rheumatoid arthritis. Lancet, 2016. 388(10055): p. 2023-2038.
10. Nakae, S., et al., Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice. J Immunol, 2003. 171(11): p. 6173-7.
11. Hata, H., et al., Distinct contribution of IL-6, TNF-alpha, IL-1, and IL-10 to T cell-mediated spontaneous autoimmune arthritis in mice. J Clin Invest, 2004. 114(4): p. 582-8.
12. Kotake, S., et al., IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest, 1999. 103(9): p. 1345-52.
13. Katz, Y., O. Nadiv, and Y. Beer, Interleukin-17 enhances tumor necrosis factor alpha-induced synthesis of interleukins 1,6, and 8 in skin and synovial fibroblasts: a possible role as a 'fine-tuning cytokine' in inflammation processes. Arthritis Rheum, 2001. 44(9): p. 2176-84.
14. McMahon, E.J., et al., Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis. Nat Med, 2005. 11(3): p. 335-9.
15. Lovett-Racke, A.E., Y. Yang, and M.K. Racke, Th1 versus Th17: are T cell cytokines relevant in multiple sclerosis? Biochim Biophys Acta, 2011. 1812(2): p. 246-51.
16. Kozovska, M.E., et al., Interferon beta induces T-helper 2 immune deviation in MS. Neurology, 1999. 53(8): p. 1692-7.
17. Zoghi, S., et al., Cytokine secretion pattern in treatment of lymphocytes of multiple sclerosis patients with fumaric acid esters. Immunol Invest, 2011. 40(6): p. 581-96.
18. Neumann, H., et al., Cytotoxic T lymphocytes in autoimmune and degenerative CNS diseases. Trends Neurosci, 2002. 25(6): p. 313-9.
19. Ji, Q., L. Castelli, and J.M. Goverman, MHC class I-restricted myelin epitopes are cross-presented by Tip-DCs that promote determinant spreading to CD8(+) T cells. Nat Immunol, 2013. 14(3): p. 254-61.
20. Jen, H.Y., et al., Increased serum interleukin-17 and peripheral Th17 cells in children with acute Henoch-Schonlein purpura. Pediatr Allergy Immunol, 2011. 22(8): p. 862-8.
21. Chen, O., et al., The imbalance of Th17/Treg in Chinese children with Henoch-Schonlein purpura. Int Immunopharmacol, 2013. 16(1): p. 67-71.
22. Rosenblum, M.D., et al., Treating human autoimmunity: current practice and future prospects. Sci Transl Med, 2012. 4(125): p. 125sr1.
23. Pittenger, M.F., et al., Multilineage potential of adult human mesenchymal stem cells. Science, 1999. 284(5411): p. 143-7.
24. Muguruma, Y., et al., Reconstitution of the functional human hematopoietic microenvironment derived from human mesenchymal stem cells in the murine bone marrow compartment. Blood, 2006. 107(5): p. 1878-87.
25. Horwitz, E.M., et al., Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy, 2005. 7(5): p. 393-5.
26. Nauta, A.J., et al., Mesenchymal stem cells inhibit generation and function of both CD34+-derived and monocyte-derived dendritic cells. J Immunol, 2006. 177(4): p. 2080-7.
27. Spaggiari, G.M., et al., Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood, 2008. 111(3): p. 1327-33.
28. Raffaghello, L., et al., Human mesenchymal stem cells inhibit neutrophil apoptosis: a model for neutrophil preservation in the bone marrow niche. Stem Cells, 2008. 26(1): p. 151-62.
29. Traggiai, E., et al., Bone marrow-derived mesenchymal stem cells induce both polyclonal expansion and differentiation of B cells isolated from healthy donors and systemic lupus erythematosus patients. Stem Cells, 2008. 26(2): p. 562-9.
30. Corcione, A., et al., Human mesenchymal stem cells modulate B-cell functions. Blood, 2006. 107(1): p. 367-72.
31. Yoo, H.S., et al., Mesenchymal stromal cells inhibit CD25 expression via the mTOR pathway to potentiate T-cell suppression. Cell Death Dis, 2017. 8(2): p. e2632.
32. Glennie, S., et al., Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood, 2005. 105(7): p. 2821-7.
33. Aggarwal, S. and M.F. Pittenger, Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, 2005. 105(4): p. 1815-22.
34. Lim, J.H., et al., Immunomodulation of delayed-type hypersensitivity responses by mesenchymal stem cells is associated with bystander T cell apoptosis in the draining lymph node. J Immunol, 2010. 185(7): p. 4022-9.
35. Gonzalez, M.A., et al., Adipose-derived mesenchymal stem cells alleviate experimental colitis by inhibiting inflammatory and autoimmune responses. Gastroenterology, 2009. 136(3): p. 978-89.
36. Boumaza, I., et al., Autologous bone marrow-derived rat mesenchymal stem cells promote PDX-1 and insulin expression in the islets, alter T cell cytokine pattern and preserve regulatory T cells in the periphery and induce sustained normoglycemia. J Autoimmun, 2009. 32(1): p. 33-42.
37. Kavanagh, H. and B.P. Mahon, Allogeneic mesenchymal stem cells prevent allergic airway inflammation by inducing murine regulatory T cells. Allergy, 2011. 66(4): p. 523-31.
38. Zhou, H., et al., Efficacy of bone marrow-derived mesenchymal stem cells in the treatment of sclerodermatous chronic graft-versus-host disease: clinical report. Biol Blood Marrow Transplant, 2010. 16(3): p. 403-12.
39. Fiorina, P., et al., Immunomodulatory function of bone marrow-derived mesenchymal stem cells in experimental autoimmune type 1 diabetes. J Immunol, 2009. 183(2): p. 993-1004.
40. Ghannam, S., et al., Mesenchymal stem cells inhibit human Th17 cell differentiation and function and induce a T regulatory cell phenotype. J Immunol, 2010. 185(1): p. 302-12.
41. Rafei, M., et al., Mesenchymal stromal cells ameliorate experimental autoimmune encephalomyelitis by inhibiting CD4 Th17 T cells in a CC chemokine ligand 2-dependent manner. J Immunol, 2009. 182(10): p. 5994-6002.
42. Darlington, P.J., et al., Reciprocal Th1 and Th17 regulation by mesenchymal stem cells: Implication for multiple sclerosis. Ann Neurol, 2010. 68(4): p. 540-5.
43. Li, M., et al., Mesenchymal stem cells suppress CD8+ T cell-mediated activation by suppressing natural killer group 2, member D protein receptor expression and secretion of prostaglandin E2, indoleamine 2, 3-dioxygenase and transforming growth factor-beta. Clin Exp Immunol, 2014. 178(3): p. 516-24.
44. Rasmusson, I., et al., Mesenchymal stem cells fail to trigger effector functions of cytotoxic T lymphocytes. J Leukoc Biol, 2007. 82(4): p. 887-93.
45. Rasmusson, I., et al., Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation, 2003. 76(8): p. 1208-13.
46. Karlsson, H., et al., Mesenchymal stem cells exert differential effects on alloantigen and virus-specific T-cell responses. Blood, 2008. 112(3): p. 532-41.
47. Selmani, Z., et al., Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+ regulatory T cells. Stem Cells, 2008. 26(1): p. 212-22.
48. Augello, A., et al., Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. Eur J Immunol, 2005. 35(5): p. 1482-90.
49. Krampera, M., et al., Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells, 2006. 24(2): p. 386-98.
50. Ryan, J.M., et al., Interferon-gamma does not break, but promotes the immunosuppressive capacity of adult human mesenchymal stem cells. Clin Exp Immunol, 2007. 149(2): p. 353-63.
51. Di Nicola, M., et al., Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood, 2002. 99(10): p. 3838-43.
52. Renner, P., et al., Mesenchymal stem cells require a sufficient, ongoing immune response to exert their immunosuppressive function. Transplant Proc, 2009. 41(6): p. 2607-11.
53. Li, W., et al., Mesenchymal stem cells: a double-edged sword in regulating immune responses. Cell Death Differ, 2012. 19(9): p. 1505-13.
54. Romieu-Mourez, R., et al., Cytokine modulation of TLR expression and activation in mesenchymal stromal cells leads to a proinflammatory phenotype. J Immunol, 2009. 182(12): p. 7963-73.
55. Waterman, R.S., et al., A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an Immunosuppressive MSC2 phenotype. PLoS One, 2010. 5(4): p. e10088.
56. Stagg, J., et al., Interferon-gamma-stimulated marrow stromal cells: a new type of nonhematopoietic antigen-presenting cell. Blood, 2006. 107(6): p. 2570-7.
57. Chan, J.L., et al., Antigen-presenting property of mesenchymal stem cells occurs during a narrow window at low levels of interferon-gamma. Blood, 2006. 107(12): p. 4817-24.
58. Tse, W.T., et al., Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation, 2003. 75(3): p. 389-97.
59. Rustad, K.C. and G.C. Gurtner, Mesenchymal Stem Cells Home to Sites of Injury and Inflammation. Adv Wound Care (New Rochelle), 2012. 1(4): p. 147-152.
60. Amorin, B., et al., Mesenchymal stem cell therapy and acute graft-versus-host disease: a review. Hum Cell, 2014. 27(4): p. 137-50.
61. Liang, J., et al., Allogenic mesenchymal stem cells transplantation in refractory systemic lupus erythematosus: a pilot clinical study. Ann Rheum Dis, 2010. 69(8): p. 1423-9.
62. Llufriu, S., et al., Randomized placebo-controlled phase II trial of autologous mesenchymal stem cells in multiple sclerosis. PLoS One, 2014. 9(12): p. e113936.
63. Forbes, G.M., et al., A phase 2 study of allogeneic mesenchymal stromal cells for luminal Crohn's disease refractory to biologic therapy. Clin Gastroenterol Hepatol, 2014. 12(1): p. 64-71.
64. Su, L.J., et al., Fluorescent nanodiamonds enable quantitative tracking of human mesenchymal stem cells in miniature pigs. Sci Rep, 2017. 7: p. 45607.
65. Schmitz, J., et al., IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity, 2005. 23(5): p. 479-90.
66. Moussion, C., N. Ortega, and J.P. Girard, The IL-1-like cytokine IL-33 is constitutively expressed in the nucleus of endothelial cells and epithelial cells in vivo: a novel 'alarmin'? PLoS One, 2008. 3(10): p. e3331.
67. Lefrancais, E., et al., IL-33 is processed into mature bioactive forms by neutrophil elastase and cathepsin G. Proc Natl Acad Sci U S A, 2012. 109(5): p. 1673-8.
68. Lefrancais, E., et al., Central domain of IL-33 is cleaved by mast cell proteases for potent activation of group-2 innate lymphoid cells. Proc Natl Acad Sci U S A, 2014. 111(43): p. 15502-7.
69. Luthi, A.U., et al., Suppression of interleukin-33 bioactivity through proteolysis by apoptotic caspases. Immunity, 2009. 31(1): p. 84-98.
70. Molofsky, A.B., A.K. Savage, and R.M. Locksley, Interleukin-33 in Tissue Homeostasis, Injury, and Inflammation. Immunity, 2015. 42(6): p. 1005-19.
71. Morita, H., et al., An Interleukin-33-Mast Cell-Interleukin-2 Axis Suppresses Papain-Induced Allergic Inflammation by Promoting Regulatory T Cell Numbers. Immunity, 2015. 43(1): p. 175-86.
72. Zaiss, D.M., et al., Emerging functions of amphiregulin in orchestrating immunity, inflammation, and tissue repair. Immunity, 2015. 42(2): p. 216-26.
73. Baumann, C., et al., T-bet- and STAT4-dependent IL-33 receptor expression directly promotes antiviral Th1 cell responses. Proc Natl Acad Sci U S A, 2015. 112(13): p. 4056-61.
74. Liew, F.Y., J.P. Girard, and H.R. Turnquist, Interleukin-33 in health and disease. Nat Rev Immunol, 2016. 16(11): p. 676-689.
75. Ren, G., et al., Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell, 2008. 2(2): p. 141-50.
76. Meisel, R., et al., Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood, 2004. 103(12): p. 4619-21.
77. Le Blanc, K., et al., Transplantation of mesenchymal stem cells to enhance engraftment of hematopoietic stem cells. Leukemia, 2007. 21(8): p. 1733-8.
78. Zappia, E., et al., Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood, 2005. 106(5): p. 1755-61.
79. Gerdoni, E., et al., Mesenchymal stem cells effectively modulate pathogenic immune response in experimental autoimmune encephalomyelitis. Ann Neurol, 2007. 61(3): p. 219-27.
80. Zhang, J., et al., Human bone marrow stromal cell treatment improves neurological functional recovery in EAE mice. Exp Neurol, 2005. 195(1): p. 16-26.
81. Bai, L., et al., Human bone marrow-derived mesenchymal stem cells induce Th2-polarized immune response and promote endogenous repair in animal models of multiple sclerosis. Glia, 2009. 57(11): p. 1192-203.
82. Karussis, D., et al., Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol, 2010. 67(10): p. 1187-94.
83. Ma, Q., et al., Cell density plays a critical role in ex vivo expansion of T cells for adoptive immunotherapy. J Biomed Biotechnol, 2010. 2010: p. 386545.
84. Lan, Y.W., et al., Hypoxia-preconditioned mesenchymal stem cells attenuate bleomycin-induced pulmonary fibrosis. Stem Cell Res Ther, 2015. 6: p. 97.
85. English, K., et al., IFN-gamma and TNF-alpha differentially regulate immunomodulation by murine mesenchymal stem cells. Immunol Lett, 2007. 110(2): p. 91-100.
86. Fock, V., et al., Macrophage-derived IL-33 is a critical factor for placental growth. J Immunol, 2013. 191(7): p. 3734-43.
87. Murakami-Satsutani, N., et al., IL-33 promotes the induction and maintenance of Th2 immune responses by enhancing the function of OX40 ligand. Allergol Int, 2014. 63(3): p. 443-55.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67066-
dc.description.abstract自體免疫疾病是一種慢性發炎的疾病,且第一型輔助性T細胞與第十七型輔助性T細胞在其致病機轉中扮演不可或缺的角色。間質幹細胞具有免疫抑制的功能,並且被廣泛地研究作為許多自體免疫疾病療法的可能性。在本篇論文中,我們研究分離自新來源的胎盤絨毛膜褪膜間質幹細胞(pcMSC)是否具有抑制自體免疫疾病病人之T細胞功能的能力。我們也進一步探討pcMSC免疫調控能力的機轉,並研究IL-33是否在其中扮演一定的角色。我們發現pcMSC無法抑制小兒自體免疫疾病病人之T細胞。重要的是,pcMSC可以顯著地抑制多發性硬化症與視神經脊髓炎病人之完全活化的T細胞,不過它也意外地對低度活化之T細胞表現免疫促進的效果。我們更進一步證明pcMSC的促進效果不須依靠細胞之間的接觸,且經IFN-前處理後亦無法避免此現象的發生。再者,pcMSC的抑制與促進能力皆與IL-33無關。總結來說,pcMSC具有治療多發性硬化症與視神經脊髓炎的潛能,但其免疫促進的效果必須被審慎評估。zh_TW
dc.description.abstractAutoimmune disease is a type of chronic inflammatory disease, and T helper 1 (Th1) and T helper 17 (Th17) cells play a crucial role in its pathogenesis. Mesenchymal stem cells (MSC) possess immunosuppressive function and are widely studied as a potential cell therapy to many autoimmune diseases. Here, we investigated the therapeutic potential of the newly isolated placenta choriodecidual membrane-derived MSCs (pcMSCs) on T cell function of various autoimmune diseases. We also investigated the mechanisms of the immune-modulatory effects of pcMSCs, and evaluated whether IL-33 plays a role in them. We found that pcMSCs could not inhibit the T cells derived from pediatric autoimmune patients. Of note, pcMSCs significantly suppressed high-reactive T cells from adult multiple sclerosis (MS) and neuromyelitis optica (NMO) patients, although they displayed an unexpected enhancing effect on low-reactive T cells. We further demonstrated that the enhancing effect of pcMSCs is not dependent of cell-cell contact, and may not be prevented by IFN- pretreatment. Also, the suppressive and promoting function of pcMSCs were not mediated by IL-33. In conclusion, pcMSCs may have the potential to remedy MS and NMO, but their immune-enhancing effect should be carefully considered beforehand.en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:18:56Z (GMT). No. of bitstreams: 1
ntu-106-R04424002-1.pdf: 1296252 bytes, checksum: 903ad07184e5a7a4d8cec67f4195d233 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents致謝 i
中文摘要 ii
Abstract iii
Contents iv
Chapter 1 Introduction 1
1.1 Autoimmune disease 2
1.2 Mesenchymal stem cells (MSCs) 4
1.2.1 The immunomodulatory property of MSCs 4
1.2.2 The interactions between MSCs and T cells 5
1.2.3 The immune-promoting ability of MSCs 6
1.2.4 The therapeutic role of MSCs in autoimmune diseases 7
1.2.5 Placenta choriodecidual membrane-derived mesenchymal stem cells (pcMSCs) 7
1.3 IL-33 8
1.4 Specific Aims 9
Chapter 2 Materials and Methods 10
2.1 Patients 11
2.2 Human peripheral blood mononuclear cells (PBMCs) separation 11
2.3 Proliferation assay 11
2.4 Cytokine secretion assay 12
2.5 T cells with suboptimal activation 12
2.6 Flow Cytometry Analysis 12
2.7 Enzyme-linked immunosorbent assay (ELISA) 13
2.8 RNA extraction 13
2.9 RT-qPCR 14
2.10 siRNA mediated IL-33 knockdown 14
2.11 Statistical analysis 14
Chapter 3 Results 16
3.1 pcMSCs suppress proliferation, activation and IFN-γ production of T cells in healthy donors. 17
3.2 The immunomodulatory effects of pcMSCs on T cells in pediatric patients with autoimmune diseases. 17
3.3 The double-edged immunomodulatory effects of pcMSCs on T cells in adult patients with neurologic autoimmune disease. 18
3.4 pcMSCs had immune-enhancing effects on low-reactive T cells. 18
3.5 pcMSCs did not have immune-enhancing effects on nonreactive T cells. 19
3.6 The contribution of cell-cell contact to the immune-enhancing capability of pcMSCs. 19
3.7 The effect of conditioned medium from high-reactive T cells on the immuno-enhancing capability of pcMSCs. 20
3.8 The effect of IFN-γ and TNF-α pretreatment on the immunomodulatory capability of pcMSCs. 20
3.9 IL-33 knockdown did not affect the immunosuppressive phenotype of pcMSCs on T cells. 21
Chapter 4 Discussion 23
Figures 29
Figure 1. pcMSCs suppress proliferation, activation and IFN-γ production of T cells in healthy donors. 30
Figure 2. The immunomodulatory effects of pcMSCs on T cells in pediatric patients with autoimmune diseases. 31
Figure 3. The double-edged immunomodulatory effects of pcMSCs on T cells in patients with neurologic autoimmune disease. 33
Figure 4. The immunomodulatory effects of pcMSCs on the frequency of IFN-γ producing T cells. 34
Figure 5. pcMSCs had immune-enhancing effects on low-reactive T cells. 36
Figure 6. pcMSCs did not have immune-enhancing effects on nonreactive T cells. 37
Figure 7. The contribution of cell-cell contact to the immune-enhancing capability of pcMSCs. 38
Figure 8. The effect of conditioned medium from high-reactive T cells on the immuno-enhancing capability of pcMSCs. 39
Figure 9. The effect of IFN-γ and TNF-α pretreatment on the immunomodulatory capability of pcMSCs. 41
Figure 10. pcMSCs express IL33. 42
Figure 11. IL-33 knockdown did not affect the expression of potential immunosuppressive mediators in pcMSCs. 43
Figure 12. IL-33 knockdown did not affect the immunomodulatory phenotype of pcMSCs on T cells. 45
Table 46
Table 1. The immunomodulatory effects of pcMSCs on T cells in patients with pediatric autoimmune disease. 47
Chapter 5 References 48
dc.language.isoen
dc.subject免疫調節zh_TW
dc.subjectT細胞zh_TW
dc.subject間質幹細胞zh_TW
dc.subject自體免疫疾病zh_TW
dc.subjectIL-33zh_TW
dc.subjectautoimmune diseaseen
dc.subjectmesenchymal stem cells (MSCs)en
dc.subjectT cellsen
dc.subjectimmunomodulationen
dc.subjectIL-33en
dc.title探討間質幹細胞對自體免疫疾病病人之T細胞的免疫調控能力及其機制zh_TW
dc.titleStudy on the Immunoregulatory Effect of Mesenchymal Stem Cells on T Cells From Patients with Autoimmune Diseases and Its Mechanismen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee周秀慧,孫昭玲,林泰元,胡忠怡
dc.subject.keyword自體免疫疾病,間質幹細胞,T細胞,免疫調節,IL-33,zh_TW
dc.subject.keywordautoimmune disease,mesenchymal stem cells (MSCs),T cells,immunomodulation,IL-33,en
dc.relation.page56
dc.identifier.doi10.6342/NTU201702381
dc.rights.note有償授權
dc.date.accepted2017-08-12
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫學檢驗暨生物技術學研究所zh_TW
Appears in Collections:醫學檢驗暨生物技術學系

Files in This Item:
File SizeFormat 
ntu-106-1.pdf
  Restricted Access
1.27 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved