Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 漁業科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67042
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蕭仁傑(Jen-Chieh Shiao)
dc.contributor.authorJhen Hsuen
dc.contributor.author許蓁zh_TW
dc.date.accessioned2021-06-17T01:18:13Z-
dc.date.available2019-08-24
dc.date.copyright2017-08-24
dc.date.issued2017
dc.date.submitted2017-08-11
dc.identifier.citationAranda, G., Medina, A., Santos, A., Abascal, F. J., and Galaz, T. (2013). Evaluation of Atlantic bluefin tuna reproductive potential in the western Mediterranean Sea. Journal of Sea Research, 76: 154–160.
Ashida, H., Suzuki, N., Tanabe, T., Suzuki, N., and Aonuma, Y. (2015). Reproductive condition, batch fecundity, and spawning fraction of large Pacific bluefin tuna Thunnus orientalis landed at Ishigaki Island, Okinawa, Japan. Environmental Biololgy of Fish, 98:1173–1183.
Beamish, R. J., and Fournier, D. A. (1981). A method for comparing the precision of a set of age determinations. Canadian Journal of Fisheries and Aquatic Sciences, 38: 982–983.
Bayliff, W. H. (1994). A review of the biology and fisheries for northern bluefin tuna, Thunnus thynnus, in the Pacific Ocean. In Interactions of Pacific Tuna Fisheries, pp. 244–295. Ed. by R.S. Shomura, J. Majkowski, and S. Langi. FAO, Rome. 439 pp.
Baumann, H., Wells, R. J. D., Rooker, J. R., Zhang, S., Baumann, Z., Madigan, D. J., Dewar, H., Snodgrass, O. E., and Fisher, N. S. (2015). Combining otolith microstructure and trace elemental analyses to infer the arrival of juvenile Pacific bluefin tuna in the California current ecosystem. ICES Journal of Marine Science, 72: 2128–2138.
Campana, S. E., Anmand, M. C., and McMillan, J. I. (1995). Graphical and statistical methods for determining the consistency of age determinations. Transactions of the American Fisheries Society, 124:131–138.
Chen, K. S., P. Crone and C. C. Hsu (2006). Reproductive biology of female Pacific bluefin tuna Thunnus orientalis from south-western North Pacific Ocean. Fish Sci 72: 985-994.
Chih, C. P. (2009). Evaluation of the sampling efficiency of three otolith sampling methods for commercial king mackerel fisheries. Transactions of the American Fisheries Society, 138(5), 990-999.
Chih, C. P. (2009). The effects of otolith sampling methods on the precision of growth curves. North American Journal of Fisheries Management, 29(6), 1519-1528.
Coggins, L. G., D. C. Gwinn and M. S. Allen (2013). Evaluation of age–length key sample sizes required to estimate fish total mortality and growth. Transactions of the American Fisheries Society 142: 832-840.
Devries, D. R. and R. V. Frie (1996). Determination of age and growth in Fisheries techniques, 2nd edn, pp. 483–512. Ed by B.R. Murphy and D.W. Willis. American Fisheries Society, Bethesda, Maryland, 732 pp.
Dittman, A. and Quinn, T. (1996). Homing in Pacific salmon: mechanisms and ecological basis. Journal of Experimental Biology, 199(1), 83-91.
Efron, B., and R. J. Tibshirani. (1993). An introduction to the bootstrap. Chapman Hall, New York.
Fridriksson, A. (1934). On the calculation of age distribution within a stock of cod by means of relatively few age determinations as a key to measurements on a large scale. Rapports et Procs-Verbaux des Reunions, Conseil International Pour Exploration de la Mer, 86: 1–14.
Farley, J. H., Davis, T. L. O., Gunn, J. S., Clear, N. P., and Preece, A. L. (2007). Demographic patterns of southern bluefin tuna, Thunnus maccoyii, as inferred from direct age data. Fisheries Research, 83: 151–161.
Farley, J. and M. Basson (2005). Developing age-length keys for the Australian SBT surface fishery based on direct age estimations using otoliths. CSIRO Division of Marine and Atmospheric Research
Farley, J. H., Eveson, J. P., Davis, T. L. O., Andamari, R., Proctor, C. H., Nugraha, B., and Davis, C. R. (2014). Demographic structure, sex ratio and growth rates of southern bluefin tuna (Thunnus maccoyii) on the spawning ground. PLoS One, 9: e96392.
Fujioka, K., Masujima, M., Boustany, A. M., and Kitagawa, T. (2015). Horizontal movements of Pacific bluefin tuna. In Biology and Ecology of bluefin Tuna, pp. 101–122. Ed. by T. Kitagawa and S. Kimura. CRC Press, Boca Raton. 425 pp.
Goodyear, C. P. (1995). Mean size at age: an evaluation of sampling strategies with simulated red grouper data. Transactions of the American Fisheries Society 124:746–755.
Hsu, C. C., Liu, H. C., Wu, C. L., Huang, S. T., and Liao, H. K. (2000). New information on age composition and length-weight relationship of bluefin tuna, Thunnus thynnus, in the southwestern North Pacific. Fisheries Science, 66: 485–493.
Høie, H., E. Otterlei and A. Folkvord (2004). Temperature-dependent fractionation of stable oxygen isotopes in otoliths of juvenile cod (Gadus morhua L.). ICES Journal of Marine Science 61: 243−251.
Itoh, T., S. Tsuji and A. Nitta (2003). Migration patterns of young Pacific bluefin tuna (Thunnus orientalis) determined with archival tags. Fishery Bulletin 101: 514-534.
Itoh, T. (2006). Sizes of adult bluefin tuna Thunnus orientalis in different areas of the western Pacific Ocean. Fisheries Science 72: 53-62.
Itoh, T. (2009). Contributions of different spawning seasons to the stock of Pacific bluefin tuna Thunnus orientalis estimated from otolith daily increments and catch-at-length data of age-0 fish. Nippon Suisan Gakk 75(3): 412-418.
ISC. (2016). Report of the pacific bluefin tuna working group workshop. International Scientific Committee for Tuna and Tuna-like Species in the North Pacific Ocean, 29 February - 11 March 2016, La Jolla, USA.
Kitagawa, T., Kimura, S., Nakata, H., and Yamada, H. (2006). Thermal adaptation of Pacific bluefin tuna Thunnus orientalis to temperate waters. Fisheries Science, 72: 149–156.
Kitagawa, T., Kimura, S., Nakata, H., Yamada, H., Nitta, A., Sasai, Y. and Sasaki, H. (2008). Immature Pacific bluefin tuna, Thunnus orientalis, utilizes cold waters in the Subarctic Frontal Zone for trans-Pacific migration. Environmental Biology of Fishes, 84:193–196.
Lohmann, K. J., Putman, N. F. and Lohmann, C. M. (2008). Geomagnetic imprinting: a unifying hypothesis of long-distance natal homing in salmon and sea turtles. Proceedings of the National Academy of Sciences, 105(49), 19096-19101.
Mugiya, Y. and Watabe, N. (1977). Studies on fish scale formation and resorption—II. Effect of estradiol on calcium homeostasis and skeletal tissue resorption in the goldfish, Carassius auratus, and the killifish, Fundulus heteroclitus. Comparative Biochemistry and Physiology Part A: Physiology, 57(2), 197-202.
Madigan, D. J., Baumann, Z., Carlisle, A. B., Hoen, D. K., Popp, B. N., Dewar, H., ... & Fisher, N. S. (2014). Reconstructing transoceanic migration patterns of Pacific bluefin tuna using a chemical tracer toolbox. Ecology, 95(6), 1674-1683.
Nakanishi, T. and M. Minagawa (2003). Stable carbon and nitrogen isotopic compositions of sinking particles in the northeast Japan Sea. Geochemical Journal 37: 261−275.
Okochi, Y., Abe, O., Tanaka, S., Ishihara, Y., and Shimizu, A. (2016). Reproductive biology of female Pacific bluefin tuna, Thunnus orientalis, in the Sea of Japan. Fisheries Research, 174: 30-39.
Rooker, J. R., Secor, D. H., De Metrio, G., Schloesser, R., Block, B. A. and Neilson, J. D. (2008). Natal homing and connectivity in Atlantic bluefin tuna populations. Science, 322(5902), 742-744.
Schaefer, K. M. (1996). Spawning time, frequency, and batch fecundity of yellowfin tuna, Thunnus albacares, near Clipperton Atoll in the eastern Pacific Ocean. Fishery Bulletin, 94: 98–112.
Schaefer, K. M. (2001). Reproductive biology of tunas. In Tuna: Physiology, Ecology and Evolution, pp. 225-269. Ed. by B.A. Block and E.D. Stevens. Academic Press, San Diego. 468 pp.
Solomon, C. T., P. K. Weber, J. J. Cech, B. L. Ingram, M. E. Conrad, M. V. Machavarm, A. R. Pogodina and R. L. Franklin (2006). Experimental determination of the sources of otolith carbon and associated isotopic fractionation. Canadian Journal of Fisheries and Aquatic Sciences 63:79-89.
Shimose, T., T. Tanabe, K. S. Chen and C. C. Hsu (2009). Age determination and growth of Pacific bluefin tuna, Thunnus orientalis, off Japan and Taiwan. Fisheries Research 100: 134-139.
Shiao, J. C., Wang, S. W., Yokawa, K., Ichinokawa, M., Takeuchi, Y., Chen, Y. G., and Shen, C. C. (2010). Natal origin of Pacific bluefin tuna Thunnus orientalis inferred from otolith oxygen isotope composition. Marine Ecology Progress Series, 420: 207-219.
Shiao, J. C., H. B. Lu, J. Hsu, H. J. Wang, S. K. Chang, M. Y. Huang and T. Ishihara (2017). Changes in size, age, and sex ratio composition of Pacific bluefin tuna (Thunnus orientalis) on the northwestern Pacific Ocean spawning grounds. ICES Journal of Marine Science 74(1): 204-214.
Shimose, T., and Farley, J. H. (2015). Age, growth and reproductive biology of bluefin tunas. In Biology and Ecology of bluefin Tuna, pp. 47–77. Ed. by T. Kitagawa and S. Kimura. CRC Press, Boca Raton. 425 pp.
Shimose, T. and T. Ishihara (2015). A manual for age determination of Pacific bluefin tuna Thunnus orientalis. Bulletin of Fisheries Research Agency 40: 1-11.
Shimose, T., Aonuma, Y., Suzuki, N., and Tanabe, T. (2016). Sexual differences in the occurrence of Pacific bluefin tuna Thunnus orientalis in the spawning ground, Yaeyama Islands. Environmental Biology of Fish, 99: 351–360.
Tanaka, Y., K. Satoh, M. Iwahashi and H. Yamada (2006). Growth-dependent recruitment of Pacific bluefin tuna Thunnus orientalis in the northwestern Pacific Ocean. Marine Ecology Progress Series 319: 225-235.
Tanaka, Y., M. Mohri and H. Yamada (2007). Distribution, growth and hatch date of juvenile Pacific bluefin tuna Thunnus orientalis in the coastal area of the Sea of Japan. Fisheries Science 73: 534-542
Tanaka, Y. and N. Suzuki. (2015). Early life history. In Biology and Ecology of bluefin Tuna, pp. 19–46. Ed. by T. Kitagawa and S. Kimura. CRC Press, Boca Raton. 425 pp.
Weiss, R. E. and N. Watabe (1978). Studies on the biology of fish bone—I. Bone resorption after scale removal. Comparative Biochemistry and Physiology Part A: Physiology, 60(2), 207-211.
Weidel, B. C., T. Ushikubo, S. R. Carpenter, N. T. Kita, J. J. Cole, J. F. Kitchell, M. L. Pace and J. W Valley (2007). Diary of a bluegill (Lepomis macrochirus): daily δ13C and δ18O records in otoliths by ion microprobe. Canadian Journal of Fisheries and Aquatic Sciences 64: 1641–1645
Yamada, H., N. Takagi and D. Nishimura (2006). Recruitment abundance index of Pacific bluefin tuna using fisheries data on juveniles. Fisheries Science, 72: 333–341.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67042-
dc.description.abstract太平洋黑鮪 (Thunnus orientalis) 為臺灣近海鮪延繩釣漁業的經濟物種之一,其主要產卵場位於西北太平洋菲律賓海與琉球群島海域及日本海。半個世紀以來,因資源過度開發造成太平洋黑鮪族群量嚴重下降,因此有必要加強基礎研究,以利漁業管理。藉由分析耳石穩定性氧同位素值時序列變化發現臺灣漁獲的太平洋黑鮪大多孵化於西北太平洋海域(85%),而孵化於日本海的個體所佔的比例較少(15%),代表太平洋黑鮪傾向返回到出生的海域進行產卵。分析今年的資料發現,臺灣捕獲的太平洋黑鮪大多以雄魚的比例較高,平均體長的變化由2013至2015年中小型魚(小於200公分)的比例開始增加,使2013-2015年平均體長下降,但2016年的小型產卵個體有減少趨勢。再者根據2010-2016年漁獲量的分布,發現於北緯24度以南的太平洋黑鮪體長顯著大於北緯24度以北之太平洋黑鮪體長。2015年於東港及南方澳漁港採集827組黑鮪耳石進行年齡判讀,將年齡所對應的尾叉長建立Age-Length Key,估算2015年的太平洋黑鮪的年齡組成。同樣再利用2011-2015年共收集1719組耳石資料以此估計2002-2015年臺灣於西北太平洋海域所捕獲太平洋黑鮪之年齡組成。結果顯示,2002-2008年平均年齡為11-12歲。2009-2012年平均年齡增加到16-17歲。2013-2015年,6-10歲的個體開始增加並逐漸加入該漁場。由於採集大量耳石需投入非常多的經費及人力。因此透過分析三種耳石採樣方法的效益,分別為Random Otolith Sampling(ROS), Equal Otolith Sampling(EOS)和Reweighting Sampling (REW),並且以耳石樣本數100, 200, 400, 500和1000個進行模擬,用以評估最小有效耳石樣本數。結果顯示三種方法皆隨樣本增加,所評估出的年齡組成精準度皆增加,其中以REW用於年齡組成估計結果之精準度最佳,當樣本數超過500個之後,能減少的不確定性非常的少,因此500個耳石樣本數為最適合的樣本數,可做為未來的採樣參考依據。zh_TW
dc.description.abstractPacific bluefin tuna (Thunnus orientalis, PBF), a high-valued species, is heavily exploited and its biomass reached the historically low level. The natal origin of each PBF can be traced and determined by otolith stable isotopic compositions. Totally, 26 otoliths were analyzed and the result suggested most PBF collected in Taiwan were hatched in the northwestern Pacific Ocean (85%) with a small portion (15%) hatched in the Japan Sea. This study examined the demographic changes of the PBF in 2002 to 2016 and the outcomes may improve the management of this species. PBF smaller than 200 cm were rarely found in the tropical areas(south of 24°N) and the mean sizes of the PBF caught in tropical areas were significantly larger than those caught in the subtropical areas (north of 24°N, t-test , p < 0.001). These results suggested that the choice of spawning latitudes of the PBF was influenced by the size of spawning adults. The sex ratio of smaller (smaller than 200 cm) and intermediate size classes (200-230 cm) was female dominated (50-75%) while larger fish (larger than 240 cm) were male dominated (62-100%). A classical Age-Length Key (ALK) based on the ages and lengths of 892 fish were applied to the length frequencies of the catches in the northwestern Pacific spawning grounds to estimate the annual age compositions of the PBF. Ages of the spawners concentrated in 7-20 years old (range = 4-28 years), corresponding to fork lengths between 200 and 240 cm. In 2013 to 2015, 2005-2009 year-cohorts (age 6-10) increased in relative abundance while the strong 1994 and 1996 year-cohorts decreased because they were near the end of their life span. We further evaluated the efficiency of three otolith sampling methods: the random otolith sampling method (ROS), the equal otolith sampling method (EOS) and the reweighting otolith sampling (REW) by simulating approach using different sample size. The uncertainty reduced as the sample size increased for all three methods, however, the REW provides higher efficiency than the ROS and EOS methods. Very little uncertainty can be reduced when the sample size increase to 500, which might be the minimum effective otolith sample sizes. The REW methods and 500 otoliths can be regarded as a guild line for the future study and management.en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:18:13Z (GMT). No. of bitstreams: 1
ntu-106-R04b45006-1.pdf: 7407770 bytes, checksum: e8b044cd02056504fc847f1d9c57683b (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents摘要 i
Abstract ii
目錄 iii
圖目錄 iv
表目錄 vi
附錄 vii
第一章、前言 1
第二章、材料與方法 5
2.1 耳石製備及讀輪 5
2.2 穩定性碳氧同位素樣本製備及分析 6
2.3 漁獲資料分析 7
2.4 年齡體長換算表(Age-Length Key) 7
2.5 耳石採樣策略及電腦模擬分析 8
第三章、結果 11
3.1 太平洋黑鮪產卵場判別 11
3.2 太平洋黑鮪捕獲位置,性別比與尾叉長組成變化 12
3.3 太平洋黑鮪的漁獲年齡組成及變化 13
3.4 耳石採樣方法比較與最適樣本數判定 14
第四章、討論 16
4.1 太平洋黑鮪產卵場判別 16
4.2 太平洋黑鮪捕獲位置、性別、尾叉長及年齡組成變化 17
4.2.1 太平洋黑鮪捕獲位置及性別之變化 17
4.2.2 太平洋黑鮪捕獲位置、尾叉長及年齡組成之變化 18
4.3 耳石抽樣方法比較與最適樣本數判定 19
4.3.1 耳石抽樣策略比較 19
4.3.2 最適樣本數判定 23
第五章、結論 25
參考文獻 26
dc.language.isozh-TW
dc.subject太平洋黑鮪zh_TW
dc.subject穩定性同位素zh_TW
dc.subject耳石抽樣策略zh_TW
dc.subject年齡體長換算表zh_TW
dc.subject性別比zh_TW
dc.subjectPaci?c blue?n tunaen
dc.subjectstable isotopic compositionen
dc.subjectdemographyen
dc.subjectAge-Length Keyen
dc.subjectsampling approachen
dc.title臺灣近海黑鮪族群變異與耳石抽樣策略之應用zh_TW
dc.titleDemography and otolith sampling approach of Pacific Bluefin tuna(Thunnus orientalis)in the water off Taiwanen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.coadvisor張以杰(Yi-Jay Chang)
dc.contributor.oralexamcommittee張水鍇,柯佳吟
dc.subject.keyword太平洋黑鮪,穩定性同位素,耳石抽樣策略,年齡體長換算表,性別比,zh_TW
dc.subject.keywordPaci?c blue?n tuna,stable isotopic composition,demography,Age-Length Key,sampling approach,en
dc.relation.page72
dc.identifier.doi10.6342/NTU201703069
dc.rights.note有償授權
dc.date.accepted2017-08-14
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept漁業科學研究所zh_TW
顯示於系所單位:漁業科學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
7.23 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved