Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊網路與多媒體研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67039
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張瑞峰(Ruey-Feng Chang)
dc.contributor.authorSheng-Zhi Huangen
dc.contributor.author黃聖智zh_TW
dc.date.accessioned2021-06-17T01:18:07Z-
dc.date.available2023-09-15
dc.date.copyright2020-09-22
dc.date.issued2020
dc.date.submitted2020-08-17
dc.identifier.citation[1] R. L. Siegel, K. D. Miller, and A. Jemal, 'Cancer statistics, 2018,' (in eng), CA Cancer J Clin, vol. 68, no. 1, pp. 7-30, Jan 2018, doi: 10.3322/caac.21442.
[2] N. L. S. T. R. Team, 'Reduced lung-cancer mortality with low-dose computed tomographic screening,' New England Journal of Medicine, vol. 365, no. 5, pp. 395-409, 2011.
[3] J. K. Field et al., 'European randomized lung cancer screening trials: post NLST,' Journal of surgical oncology, vol. 108, no. 5, pp. 280-286, 2013.
[4] I. E. L. C. A. P. Investigators, 'Survival of patients with stage I lung cancer detected on CT screening,' New England Journal of Medicine, vol. 355, no. 17, pp. 1763-1771, 2006.
[5] R. A. Smith et al., 'Cancer screening in the United States, 2019: A review of current American Cancer Society guidelines and current issues in cancer screening,' CA: a cancer journal for clinicians, vol. 69, no. 3, pp. 184-210, 2019.
[6] M. D. Martin, J. P. Kanne, L. S. Broderick, E. A. Kazerooni, and C. A. Meyer, 'Lung-RADS: pushing the limits,' Radiographics, vol. 37, no. 7, pp. 1975-1993, 2017.
[7] S. Diciotti, G. Picozzi, M. Falchini, M. Mascalchi, N. Villari, and G. Valli, '3-D segmentation algorithm of small lung nodules in spiral CT images,' IEEE T on Information Technology in Biomedicine, vol. 12, no. 1, pp. 7-19, 2008.
[8] A. R. F. Carvalho, '3D Lung Nodule Classification in Computed Tomography Images,' 2019.
[9] C. Fu, Z. Liu, F. Zhu, S. Li, and L. Jiang, 'A meta‐analysis: is low‐dose computed tomography a superior method for risky lung cancers screening population?,' The clinical respiratory journal, vol. 10, no. 3, pp. 333-341, 2016.
[10] F. Han et al., 'Texture feature analysis for computer-aided diagnosis on pulmonary nodules,' Journal of digital imaging, vol. 28, no. 1, pp. 99-115, 2015.
[11] M. N. Muhammad, D. S. Raicu, J. D. Furst, and E. Varutbangkul, 'Texture versus shape analysis for lung nodule similarity in computed tomography studies,' in Medical Imaging 2008: PACS and Imaging Informatics, 2008, vol. 6919: International Society for Optics and Photonics, p. 69190I.
[12] Q. Song, L. Zhao, X. Luo, and X. Dou, 'Using deep learning for classification of lung nodules on computed tomography images,' Journal of healthcare engineering, vol. 2017, 2017.
[13] M. Anthimopoulos, S. Christodoulidis, L. Ebner, A. Christe, and S. Mougiakakou, 'Lung pattern classification for interstitial lung diseases using a deep convolutional neural network,' IEEE T on medical imaging, vol. 35, no. 5, pp. 1207-1216, 2016.
[14] D. Lévy and A. Jain, 'Breast mass classification from mammograms using deep convolutional neural networks,' arXiv preprint arXiv:1612.00542, 2016.
[15] W. Shen et al., 'Multi-crop convolutional neural networks for lung nodule malignancy suspiciousness classification,' Pattern Recognition, vol. 61, pp. 663-673, 2017.
[16] M. Al-Shabi, B. L. Lan, W. Y. Chan, K.-H. Ng, and M. Tan, 'Lung nodule classification using deep local–global networks,' International journal of computer assisted radiology and surgery, vol. 14, no. 10, pp. 1815-1819, 2019.
[17] G. Zhang, Z. Yang, L. Gong, S. Jiang, L. Wang, and H. Zhang, 'Classification of lung nodules based on CT images using squeeze-and-excitation network and aggregated residual transformations,' La radiologia medica, pp. 1-10, 2020.
[18] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, 'Feature pyramid networks for object detection,' in Proceedings of the IEEE conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 2117-2125.
[19] D. Chang et al., 'The devil is in the channels: Mutual-channel loss for fine-grained image classification,' IEEE T on Image Processing, vol. 29, pp. 4683-4695, 2020.
[20] J. Hu, L. Shen, and G. Sun, 'Squeeze-and-excitation networks,' in Proceedings of the IEEE conference on Computer Vision and Pattern Recognition (CVPR), 2018, pp. 7132-7141.
[21] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, 'Aggregated residual transformations for deep neural networks,' in Proceedings of the IEEE conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 1492-1500.
[22] K. He, X. Zhang, S. Ren, and J. Sun, 'Deep residual learning for image recognition,' in Proceedings of the IEEE conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770-778.
[23] C. Szegedy et al., 'Going deeper with convolutions,' in Proceedings of the IEEE conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 1-9.
[24] Y. Chen et al., 'Drop an octave: Reducing spatial redundancy in convolutional neural networks with octave convolution,' in Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2019, pp. 3435-3444.
[25] R. Kohavi, 'A study of cross-validation and bootstrap for accuracy estimation and model selection,' in Ijcai, 1995, vol. 14, no. 2: Montreal, Canada, pp. 1137-1145.
[26] M. L. McHugh, 'The chi-square test of independence,' Biochemia medica: Biochemia medica, vol. 23, no. 2, pp. 143-149, 2013.
[27] J. A. Hanley and B. J. McNeil, 'The meaning and use of the area under a receiver operating characteristic (ROC) curve,' Radiology, vol. 143, no. 1, pp. 29-36, 1982.
[28] G. Kang, K. Liu, B. Hou, and N. Zhang, '3D multi-view convolutional neural networks for lung nodule classification,' PloS one, vol. 12, no. 11, p. e0188290, 2017.
[29] F. Yu and V. Koltun, 'Multi-scale context aggregation by dilated convolutions,' arXiv preprint arXiv:1511.07122, 2015.
[30] J. Dai et al., 'Deformable convolutional networks,' in Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2017, pp. 764-773.
[31] M. Migliore et al., 'Ground glass opacities management in the lung cancer screening era,' Annals of translational medicine, vol. 6, no. 5, 2018.
[32] G. Zhang, P. Yan, H. Zhao, and X. Zhang, 'A contrast enhancement algorithm for low-dose CT images based on local histogram equalization,' in 2008 2nd International Conference on Bioinformatics and Biomedical Engineering, 2008: IEEE, pp. 2462-2465.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67039-
dc.description.abstract肺癌是全世界死亡率最高的癌症之一,而肺結節是早期肺癌的一個重要表現,及早發現與治療能有效降低肺癌致死率。低劑量電腦斷層掃描(Low-dose Computed Tomography, LDCT)是肺癌偵測與診斷的重要工具,不僅輻射劑量低,同時能a提供完整的3-D胸部影像與保有肺結節解析度,因此廣泛用於肺癌的檢測。過去幾年,卷積神經網路(Convolutional Neural Network, CNN)在醫學影像領域中蓬勃發展,基於卷積神經網路實現的電腦輔助診斷系統(Computer-Aided Diagnosis, CAD)已被證實能以機器學習方式擷取圖像特徵並幫助醫師進行初步診斷。因此,我們提出以ResNeXt作為模型骨幹的CAD提供醫生診斷方面的協助,為防止卷積神經網路生成過多冗餘的特徵,我們導入輕量化的注意力機制模組使網路能專注在重要的特徵,此外,為了提升較小的惡性肺結節判斷,結合金字塔網路以融合不同尺度的特徵資訊,最後使用通道優化的混合型損失函數作為系統訓練時的損失函數,使網路能學習更細微的辨識特徵用於區分極端病例。在此研究中,使用880筆來自美國國家肺篩檢試驗的低劑量電腦斷層掃描影像進行系統的訓練與測試,其中良性結節與惡性結節各為440筆影像。實驗結果顯示,提出的系統可以達到85.3%的準確率、86.8%的靈敏性、83.9%的專一性,且ROC曲線下面積可達0.9042,證實所設計的系統有不錯的診斷能力。zh_TW
dc.description.abstractLung cancer was one of the cancers with the highest mortality rate in the world, and the lung nodule was one of the crucial symptoms of early lung cancer. Early detection and treatment could effectively reduce lung cancer mortality. Low-dose Computed Tomography (LDCT) is an important tool for lung cancer detection and diagnosis. It not only has a low radiation dose but also provides a complete three-dimensional (3-D) chest image with a high resolution of lung nodules. In recent years, Convolutional Neural Network (CNN) had flourished in the field of medical images. It had been proven that a CNN-based computer-aided diagnosis system could extract the features through the machine learning method and help radiologists to make a preliminary diagnosis. Therefore, a Computer-Aided Diagnosis (CAD) system that used ResNeXt as the backbone was proposed to assist radiologists in diagnosis. Moreover, to prevent the backbone network from generating redundant features, a lightweight network module with an attention mechanism was embedded in our model to help focus on important features. Furthermore, a multi-level feature pyramid network that incorporates feature information of different scales was added to our model to enhance the prediction performance of small malignant nodules. Finally, a hybrid loss based on channel optimization was proposed to replace a binary cross-entropy (BCE) loss. It enabled the network to learn more detailed information to classify extreme cases. In this research, there were a total of 880 low-dose CT images from the American National Lung Screening Trial (NLST) for system training and testing, including 440 benign and 440 malignant lung nodules. The results of the experiments showed that our system could achieve an accuracy of 85.3%, the sensitivity of 86.8%, the specificity of 83.9%, and the area-under-curve (AUC) value was 0.9042. It was confirmed that the designed system had a good diagnostic ability.en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:18:07Z (GMT). No. of bitstreams: 1
U0001-1608202020430800.pdf: 1776303 bytes, checksum: 039448a1bbcc31d5d3ba0c85701d71d3 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書 I
致謝 II
摘要 III
Abstract IV
Table of Contents VI
List of Figures VII
List of Tables VIII
Chapter 1. Introduction 1
Chapter 2. Material 4
Chapter 3. Methods 6
3.1. Image Preprocessing 7
3.2. Lung nodule classification 8
3.2.1. 3-D squeeze-and-excitation block (3-D SE block) 8
3.2.2. 3-D SE-RexNeXt 9
3.2.3. 3-D FPN 12
3.2.4. 3-D SE-ResNeXt-FPN 13
3.2.5. The Hybrid Loss Function 16
Chapter 4. Experimental Results and Discussions 18
4.1 Result 18
4.1.1 Comparisons of Different Numbers of Dimension 18
4.1.2 Comparisons of The Architectures and Loss Functions 20
4.2 Discussions 24
Chapter 5. Conclusion 27
Reference 28
dc.language.isoen
dc.subject注意力機制zh_TW
dc.subject殘差網路zh_TW
dc.subject電腦輔助診斷zh_TW
dc.subject電腦斷層掃描zh_TW
dc.subject肺結節zh_TW
dc.subject特徵網路金字塔zh_TW
dc.subjectcomputed tomography scanen
dc.subjectLung nodulesen
dc.subjectfeature pyramid networken
dc.subjectattention mechanismen
dc.subjectresidual networken
dc.subjectcomputer-aided diagnosisen
dc.title使用3-D注意力卷積神經網路診斷電腦斷層掃描影像上的肺結節zh_TW
dc.titleDiagnosis of Lung Nodules on Computed Tomography Images Using 3-D Attention Convolution Neural Networken
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee羅崇銘(Chung-Ming Lo),陳鴻豪(Hong-Hao Chen)
dc.subject.keyword肺結節,電腦斷層掃描,電腦輔助診斷,殘差網路,注意力機制,特徵網路金字塔,zh_TW
dc.subject.keywordLung nodules,computed tomography scan,computer-aided diagnosis,residual network,attention mechanism,feature pyramid network,en
dc.relation.page31
dc.identifier.doi10.6342/NTU202003614
dc.rights.note有償授權
dc.date.accepted2020-08-18
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊網路與多媒體研究所zh_TW
顯示於系所單位:資訊網路與多媒體研究所

文件中的檔案:
檔案 大小格式 
U0001-1608202020430800.pdf
  未授權公開取用
1.73 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved