Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67032
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曾泰琳(Tai-Lin Tseng)
dc.contributor.authorChih-Ming Linen
dc.contributor.author林志銘zh_TW
dc.date.accessioned2021-06-17T01:17:51Z-
dc.date.available2019-08-31
dc.date.copyright2017-08-31
dc.date.issued2017
dc.date.submitted2017-08-14
dc.identifier.citationAgard, P., Omrani, J., Jolivet, L., and Mouthereau, F. (2005), Convergence history across Zagros (Iran): constraints from collisional and earlier deformation, Int. J. Earth Sci., 94(3), 401-419, doi: 10.1007/s00531-005-0481-4.
Al-Lazki, A. I., Sandvol, E., Seber, D., Barazangi, M., Turkelli, N., and Mohamad, R. (2004), Pn tomographic imaging of mantle lid velocity and anisotropy at the junction of the Arabian, Eurasian and African plates, Geophys. J. Int., 158(3), 1024-1040, doi: 10.1111/j.1365-246X.2004.02355.x.
Amante, C., and Eakins, B. W. (2009). ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis (US Department of Commerce, National Oceanic and Atmospheric Administration, National Environmental Satellite, Data, and Information Service, National Geophysical Data Center, Marine Geology and Geophysics Division Colorado.
Ammon, C. J. (1991), The isolation of receiver effects from teleseismic P waveforms, Bull. Seismol. Soc. Am., 81(6), 2504-2510.
Ammon, C. J., Randall, G. E., and Zandt, G. (1990), On the nonuniqueness of receiver function inversions, J. Geophys. Res. Solid Earth, 95(B10), 15303-15318, doi: 10.1029/JB095iB10p15303.
Angus, D., Wilson, D. C., Sandvol, E., and Ni, J. (2006), Lithospheric structure of the Arabian and Eurasian collision zone in eastern Turkey from S-wave receiver functions, Geophys. J. Int., 166(3), 1335-1346, doi: 10.1111/j.1365-246X.2006.03070.x.
Argus, D. F., Gordon, R. G., and DeMets, C. (2011), Geologically current motion of 56 plates relative to the no‐net‐rotation reference frame, Geochem. Geophys. Geosyst., 12(11), doi: 10.1029/2011GC003751.
Barker, S. E., and Malone, S. D. (1991), Magmatic system geometry at Mount St. Helens modeled from the stress field associated with posteruptive earthquakes, J. Geophys. Res. Solid Earth, 96(B7), 11883-11894, doi: 10.1029/91JB00430.
Bassin, C. (2000), The current limits of resolution for surface wave tomography in North America, Eos Trans. AGU.
Becker, J., Sandwell, D., Smith, W., Braud, J., Binder, B., Depner, J., Fabre, D., Factor, J., Ingalls, S., and Kim, S. (2009), Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS, Mar. Geod., 32(4), 355-371, doi: 10.1080/01490410903297766.
Birch, F. (1960), The velocity of compressional waves in rocks to 10 kilobars: 1, J. Geophys. Res., 65(4), 1083-1102, doi: 10.1029/JZ065i004p01083.
Bird, P. (2003), An updated digital model of plate boundaries, Geochem. Geophys. Geosyst., 4(3), doi: 10.1029/2001GC000252.
Bjarnason, I. T., and Schmeling, H. (2009), The lithosphere and asthenosphere of the Iceland hotspot from surface waves, Geophys. J. Int., 178(1), 394-418, doi: 10.1111/j.1365-246X.2009.04155.x.
Bratt, S. R., and Solomon, S. C. (1984), Compressional and shear wave structure of the East Pacific Rise at 11° 20′ N: Constraints from three‐component ocean bottom seismometer data, J. Geophys. Res. Solid Earth, 89(B7), 6095-6110, doi: 10.1029/JB089iB07p06095.
Brocher, T. M. (2005), Empirical relations between elastic wavespeeds and density in the Earth's crust, Bull. Seismol. Soc. Am., 95(6), 2081-2092, doi: 10.1785/0120050077.
Burdick, L., and Helmberger, D. (1974), Time functions appropriate for deep earthquakes, Bull. Seismol. Soc. Am., 64(5), 1419-1427.
Burdick, L., and Langston, C. A. (1977), Modeling crustal structure through the use of converted phases in teleseismic body-wave forms, Bull. Seismol. Soc. Am., 67(3), 677-691.
Çakır, Ö., Erduran, M., Çınar, H., and Yılmaztürk, A. (2000), Forward modelling receiver functions for crustal structure beneath station TBZ (Trabzon, Turkey), Geophys. J. Int., 140(2), 341-356, doi: 10.1046/j.1365-246x.2000.00023.x.
Cashman, K. V., and Sparks, R. S. J. (2013), How volcanoes work: A 25 year perspective, Geol. Soc. Am. Bull., 125(5-6), 664-690, doi: 10.1130/B30720.1.
Chen, J. H., Chung, S.-L., Bingol, A. F., Lin, Y.-C., and Lin, T.-H. (2016), Zircon U-Pb ages and geochemical constraints on the petrogenesis of Cretaceous to Eocene magmatic rocks in eastern Pontides, Turkey, Goldschmidt Conference, doi: 10.13140/RG.2.1.1563.5449.
Chmielowski, J., Zandt, G., and Haberland, C. (1999), The central Andean Altiplano‐Puna magma body, Geophys. Res. Lett., 26(6), 783-786, doi: 10.1029/1999GL900078.
Christensen, N. I. (1996), Poisson's ratio and crustal seismology, J. Geophys. Res. Solid Earth, 101(B2), 3139-3156, doi: 10.1029/95JB03446.
Christensen, N. I., and Mooney, W. D. (1995), Seismic velocity structure and composition of the continental crust: A global view, J. Geophys. Res. Solid Earth, 100(B6), 9761-9788, doi: 10.1029/95JB00259.
Clague, D. A., and Straley, P. F. (1977), Petrologic nature of the oceanic Moho, Geology, 5(3), 133-136, doi: 10.1130/0091-7613(1977)5<133:PNOTOM>2.0.CO;2.
Cornwell, D., Maguire, P., England, R., and Stuart, G. (2010), Imaging detailed crustal structure and magmatic intrusion across the Ethiopian Rift using a dense linear broadband array, Geochem. Geophys. Geosyst., 11(1), doi: 10.1029/2009GC002637.
Darbyshire, F. A., Bjarnason, I. T., White, R. S., and Flóvenz, Ó. G. (1998), Crustal structure above the Iceland mantle plume imaged by the ICEMELT refraction profile, Geophys. J. Int., 135(3), 1131-1149, doi: 10.1046/j.1365-246X.1998.00701.x.
Dewey, J., Hempton, M., Kidd, W., Saroglu, F., and Şengör, A. (1986), Shortening of continental lithosphere: the neotectonics of Eastern Anatolia—a young collision zone, Geological Society, London, Special Publications, 19(1), 1-36, doi: 10.1144/GSL.SP.1986.019.01.01.
Dugda, M. T., Nyblade, A. A., Julia, J., Langston, C. A., Ammon, C. J., and Simiyu, S. (2005), Crustal structure in Ethiopia and Kenya from receiver function analysis: Implications for rift development in eastern Africa, J. Geophys. Res. Solid Earth, 110(B1), doi: 10.1029/2004JB003065.
Gök, R., Pasyanos, M. E., and Zor, E. (2007), Lithospheric structure of the continent—continent collision zone: eastern Turkey, Geophys. J. Int., 169(3), 1079-1088, doi: 10.1111/j.1365-246X.2006.03288.x.
Gök, R., Mahdi, H., Al-Shukri, H., and Rodgers, A. J. (2008), Crustal structure of Iraq from receiver functions and surface wave dispersion: implications for understanding the deformation history of the Arabian–Eurasian collision, Geophys. J. Int., 172(3), 1179-1187, doi: 10.1111/j.1365-246X.2007.03670.x.
Gök, R., Sandvol, E., Türkelli, N., Seber, D., and Barazangi, M. (2003), Sn attenuation in the Anatolian and Iranian plateau and surrounding regions, Geophys. Res. Lett., 30(24), doi: 10.1029/2003GL018020.
Gök, R., Mellors, R., Sandvol, E., Pasyanos, M., Hauk, T., Takedatsu, R., Yetirmishli, G., Teoman, U., Turkelli, N., and Godoladze, T. (2011), Lithospheric velocity structure of the Anatolian plateau‐Caucasus‐Caspian region, J. Geophys. Res. Solid Earth, 116(B5), doi: 10.1029/2009JB000837.
Gallacher, R., and Bastow, I. (2012), The development of magmatism along the Cameroon Volcanic Line: Evidence from teleseismic receiver functions, Tectonics, 31(3), doi: 10.1029/2011TC003028.
Global Volcanism Program (2013), Volcanoes of the World, v. 4.5.4., Smithsonian Institution, Downloaded 19 Mar 2017, doi: 10.5479/si.GVP.VOTW4-2013.
Gritto, R., Sibol, M. S., Siegel, J. E., Ghalib, H. A., Chen, Y., Herrmann, R. B., Alequabi, G. I., Tkalcic, H., Ali, B. S., and Saleh, B. I. (2008), Crustal structure of North Iraq from receiver function analyses, Ground-Based Nuclear Explosion Monitoring Technologies.
Gudjabidze, G., and Gamkrelidze, I. (2003), Geological map of Georgia, 1: 500.000, Georgian State Department of Geology and National Oil Company “Saqnavtobi.
Hammond, J., Kendall, J. M., Stuart, G., Keir, D., Ebinger, C., Ayele, A., and Belachew, M. (2011), The nature of the crust beneath the Afar triple junction: Evidence from receiver functions, Geochem. Geophys. Geosyst., 12(12), doi: 10.1029/2011GC003738.
Hatzfeld, D., and Molnar, P. (2010), Comparisons of the kinematics and deep structures of the Zagros and Himalaya and of the Iranian and Tibetan plateaus and geodynamic implications, Rev. Geophys., 48(2), doi: 10.1029/2009RG000304.
Horspool, N., Savage, M., and Bannister, S. (2006), Implications for intraplate volcanism and back-arc deformation in northwestern New Zealand, from joint inversion of receiver functions and surface waves, Geophys. J. Int., 166(3), 1466-1483, doi: 10.1111/j.1365-246X.2006.03016.x.
International Seismological Centre (2014), On-line Bulletin, International Seismological Centre, Thatcham, United Kingdom, http://www.isc.ac.uk.
Karakhanian, A., Jrbashyan, R., Trifonov, V., Philip, H., Arakelian, S., Avagyan, A., Baghdassaryan, H., Davtian, V., and Ghoukassyan, Y. (2003), Volcanic hazards in the region of the Armenian nuclear power plant, J. Volcanol. Geotherm. Res., 126(1), 31-62, doi: 10.1016/S0377-0273(03)00115-X.
Karakhanyan, A., Vernant, P., Doerflinger, E., Avagyan, A., Philip, H., Aslanyan, R., Champollion, C., Arakelyan, S., Collard, P., and Baghdasaryan, H. (2013), GPS constraints on continental deformation in the Armenian region and Lesser Caucasus, Tectonophysics, 592, 39-45, doi: 10.1016/j.tecto.2013.02.002.
Kendall, J. M. (2000), Seismic anisotropy in the boundary layers of the mantle, Earth's Deep Interior: Mineral physics and tomography from the atomic to the global scale, 133-159, doi: 10.1029/GM117p0133.
Kennet, B. L. N. (1991), IASPEI 1991 seismological tables, Terra Nova, 3(2), 122-122.
Keskin, M. (2003), Magma generation by slab steepening and breakoff beneath a subduction‐accretion complex: An alternative model for collision‐related volcanism in Eastern Anatolia, Turkey, Geophys. Res. Lett., 30(24), doi: 10.1029/2003GL018019.
Lü, Y., Ni, S., Chen, L., and Chen, Q. F. (2017), Pn tomography with Moho depth correction from eastern Europe to western China, J. Geophys. Res. Solid Earth, 122(2), 1284-1301, doi: 10.1002/2016JB013052.
Langston, C. A. (1979), Structure under Mount Rainier, Washington, inferred from teleseismic body waves, J. Geophys. Res. Solid Earth, 84(B9), 4749-4762, doi: 10.1029/JB084iB09p04749.
Leahy, G. M., and Park, J. (2005), Hunting for oceanic island Moho, Geophys. J. Int., 160(3), 1020-1026, doi: 10.1111/j.1365-246X.2005.02562.x.
Lees, J. M. (1992), The magma system of Mount St. Helens: non-linear high-resolution P-wave tomography, J. Volcanol. Geotherm. Res., 53(1-4), 103-116, doi: 10.1016/0377-0273(92)90077-Q.
Legendre, C. P., Tseng, T.-L., Chen, Y.-N., Huang, T.-Y., Gung, Y.-C., Karakhanyan, A., and Huang, B.-S. (2017), Complex Deformation in the Caucasus Region Revealed by Ambient Noise Seismic Tomography, Tectonophysics, doi: 10.1016/j.tecto.2017.05.024.
Leidig, M., and Zandt, G. (2003), Modeling of highly anisotropic crust and application to the Altiplano‐Puna volcanic complex of the central Andes, J. Geophys. Res. Solid Earth, 108(B1), doi: 10.1029/2001JB000649.
Ligorría, J. P., and Ammon, C. J. (1999), Iterative deconvolution and receiver-function estimation, Bull. Seismol. Soc. Am., 89(5), 1395-1400.
Mangino, S., and Priestley, K. (1998), The crustal structure of the southern Caspian region, Geophys. J. Int., 133(3), 630-648, doi: 10.1046/j.1365-246X.1998.00520.x.
McClusky, S., Reilinger, R., Mahmoud, S., Sari, D. B., and Tealeb, A. (2003), GPS constraints on Africa (Nubia) and Arabia plate motions, Geophys. J. Int., 155(1), 126-138, doi: 10.1046/j.1365-246X.2003.02023.x.
Meliksetian, K., Savov, I., Connor, C., Halama, R., Jrbashyan, R., Navasardyan, G., Ghukasyan, Y., Gevorgyan, H., Manucharyan, D., and Ishizuka, O. (2014), Aragats stratovolcano in Armenia-volcano-stratigraphy and petrology, EGU General Assembly Conference Abstracts, 16.
Motavalli-Anbaran, S.-H., Zeyen, H., and Jamasb, A. (2016), 3D crustal and lithospheric model of the Arabia–Eurasia collision zone, J. Asian Earth Sci., 122, 158-167, doi: 10.1016/j.jseaes.2016.03.012.
Mumladze, T., Forte, A. M., Cowgill, E. S., Trexler, C. C., Niemi, N. A., Yıkılmaz, M. B., and Kellogg, L. H. (2015), Subducted, detached, and torn slabs beneath the Greater Caucasus, GeoResJ, 5, 36-46, doi: 10.1016/j.grj.2014.09.004.
Nakajima, J., Matsuzawa, T., Hasegawa, A., and Zhao, D. (2001), Three‐dimensional structure of Vp, Vs, and Vp/Vs beneath northeastern Japan: Implications for arc magmatism and fluids, J. Geophys. Res. Solid Earth, 106(B10), 21843-21857, doi: 10.1029/2000JB000008.
Nasrabadi, A., Tatar, M., Priestley, K., and Sepahvand, M. (2008), Continental lithosphere structure beneath the Iranian plateau, from analysis of receiver functions and surface waves dispersion, The 14th World Conference on Earthquake Engineering, 17.
Neill, I., Meliksetian, K., Allen, M., Navarsardyan, G., and Karapetyan, S. (2013), Pliocene–Quaternary volcanic rocks of NW Armenia: magmatism and lithospheric dynamics within an active orogenic plateau, Lithos, 180, 200-215, doi: 10.1016/j.lithos.2013.05.005.
Owens, T. J., and Zandt, G. (1997), Implications of crustal property variations for models of Tibetan plateau evolution, Nature, 387(6628), 37, doi: 10.1038/387037a0.
Owens, T. J., Zandt, G., and Taylor, S. R. (1984), Seismic evidence for an ancient rift beneath the Cumberland Plateau, Tennessee: A detailed analysis of broadband teleseismic P waveforms, J. Geophys. Res. Solid Earth, 89(B9), 7783-7795, doi: 10.1029/JB089iB09p07783.
Özacar, A. A., Zandt, G., Gilbert, H., and Beck, S. L. (2010), Seismic images of crustal variations beneath the East Anatolian Plateau (Turkey) from teleseismic receiver functions, Geological Society, London, Special Publications, 340(1), 485-496, doi: 10.1144/SP340.21.
Park, J., and Levin, V. (2001), Receiver functions from regional P waves, Geophys. J. Int., 147(1), 1-11, doi: 10.1046/j.1365-246X.2001.00523.x.
Philip, H., Cisternas, A., Gvishiani, A., and Gorshkov, A. (1989), The Caucasus: an actual example of the initial stages of continental collision, Tectonophysics, 161(1-2), 1-21, doi: 10.1016/0040-1951(89)90297-7.
Phinney, R. A. (1964), Structure of the Earth's crust from spectral behavior of long‐period body waves, J. Geophys. Res., 69(14), 2997-3017, doi: 10.1029/JZ069i014p02997.
Randall, G. (1989), Efficient calculation of differential seismograms for lithospheric receiver functions, Geophys. J. Int., 99(3), 469-481, doi: 10.1111/j.1365-246X.1989.tb02033.x.
Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R., Ozener, H., Kadirov, F., Guliev, I., and Stepanyan, R. (2006), GPS constraints on continental deformation in the Africa‐Arabia‐Eurasia continental collision zone and implications for the dynamics of plate interactions, J. Geophys. Res. Solid Earth, 111(B5), doi: 10.1029/2005JB004051.
Ruppel, C., and McNutt, M. (1990), Regional compensation of the Greater Caucasus mountains based on an analysis of Bouguer gravity data, Earth Planet. Sci. Lett., 98(3-4), 360-379, doi: 10.1016/0012-821X(90)90037-X.
Schutt, D. L., Dueker, K., and Yuan, H. (2008), Crust and upper mantle velocity structure of the Yellowstone hot spot and surroundings, J. Geophys. Res. Solid Earth, 113(B3), doi: 10.1029/2007JB005109.
Sengör, A. C. (1980), Türkiye'nin Neotektoniginin Esaslari (Principles of the Neotechtonism of Turkey), TJK yayinlari, DSI matbaasi, 40.
Sengör, A. C., and Yilmaz, Y. (1981), Tethyan evolution of Turkey: A plate tectonic approach, Tectonophysics, 75, 181, doi: 10.1016/0040-1951(81)90275-4.
Sengör, A. C., and Natal'In, B. A. (1996), Turkic-type orogeny and its role in the making of the continental crust, Annu. Rev. Earth. Planet. Sci., 24(1), 263-337, doi: 10.1146/annurev.earth.24.1.263.
Sengör, A. C., Özeren, S., Genç, T., and Zor, E. (2003), East Anatolian high plateau as a mantle‐supported, north‐south shortened domal structure, Geophys. Res. Lett., 30(24), doi: 10.1029/2003GL017858.
Shaw, P. R., and Orcutt, J. A. (1985), Waveform inversion of seismic refraction data and applications to young Pacific crust, Geophys. J. Int., 82(3), 375-414, doi: 10.1111/j.1365-246X.1985.tb05143.x.
Sikharulidze, D., Tutberidze, N., Diasamidze, S., and Bochorishvili, S. (2004), The structure of the Earth's crust and upper mantle in Georgia and adjacent territories, J. Georgian Geophys. Soc. Issue (A), Phys. Solid, 9, 12-19.
Silveira, G., Vinnik, L., Stutzmann, E., Farra, V., Kiselev, S., and Morais, I. (2010), Stratification of the Earth beneath the Azores from P and S receiver functions, Earth Planet. Sci. Lett., 299(1), 91-103, doi: 10.1016/j.epsl.2010.08.021.
Sodoudi, F., Yuan, X., Kind, R., Heit, B., and Sadidkhouy, A. (2009), Evidence for a missing crustal root and a thin lithosphere beneath the Central Alborz by receiver function studies, Geophys. J. Int., 177(2), 733-742, doi: 10.1111/j.1365-246X.2009.04115.x.
Stachnik, J., Dueker, K., Schutt, D., and Yuan, H. (2008), Imaging Yellowstone plume‐lithosphere interactions from inversion of ballistic and diffusive Rayleigh wave dispersion and crustal thickness data, Geochem. Geophys. Geosyst., 9(6), doi: 10.1029/2008GC001992.
Stampfli, G. M., and Borel, G. D. (2004). The TRANSMED transects in space and time: constraints on the paleotectonic evolution of the Mediterranean domain (pp. 53-80), Springer.
Stuart, G., Bastow, I., and Ebinger, C. (2006), Crustal structure of the northern Main Ethiopian Rift from receiver function studies, Geological Society, London, Special Publications, 259(1), 253-267, doi: 10.1144/GSL.SP.2006.259.01.20.
Tan, O., and Taymaz, T. (2006), Active tectonics of the Caucasus: Earthquake source mechanisms and rupture histories obtained from inversion of teleseismic body waveforms, Geol. Soc. Am. Spec. Pap., 409, 531-578, doi: 10.1130/2006.2409(25).
Triep, E., Abers, G., Lerner‐Lam, A. L., Mishatkin, V., Zakharchenko, N., and Starovoit, O. (1995), Active thrust front of the Greater Caucasus: The April 29, 1991, Racha earthquake sequence and its tectonic implications, J. Geophys. Res. Solid Earth, 100(B3), 4011-4033, doi: 10.1029/94JB02597.
Tseng, T.-L., Hsu, H.-C., Jian, P.-R., Huang, B.-S., Hu, J.-C., and Chung, S.-L. (2016), Focal mechanisms and stress variations in the Caucasus and Northeast Turkey from constraints of regional waveforms, Tectonophysics, 691, 362-374, doi: 10.1016/j.tecto.2016.10.028.
Ward, K. M., Zandt, G., Beck, S. L., Christensen, D. H., and McFarlin, H. (2014), Seismic imaging of the magmatic underpinnings beneath the Altiplano-Puna volcanic complex from the joint inversion of surface wave dispersion and receiver functions, Earth Planet. Sci. Lett., 404, 43-53, doi: 10.1016/j.epsl.2014.07.022.
Watanabe, T. (1993), Effects of water and melt on seismic velocities and their application to characterization of seismic reflectors, Geophys. Res. Lett., 20(24), 2933-2936, doi: 10.1029/93GL03170.
Wessel, P., Smith, W. H., Scharroo, R., Luis, J., and Wobbe, F. (2013), Generic mapping tools: improved version released, Eos, Transactions American Geophysical Union, 94(45), 409-410, doi: 10.1002/2013EO450001.
Wilson, D., Aster, R., Ni, J., Grand, S., West, M., Gao, W., Baldridge, W. S., and Semken, S. (2005), Imaging the seismic structure of the crust and upper mantle beneath the Great Plains, Rio Grande Rift, and Colorado Plateau using receiver functions, J. Geophys. Res. Solid Earth, 110(B5), doi: 10.1029/2004JB003492.
Yilmaz, A., Adamia, S., Chabukiani, A., Chkhotua, T., ErdoĞan, K., Tuzcu, S., and KarabiyikoĞlu, M. (2000), Structural correlation of the southern Transcaucasus (Georgia)-eastern Pontides (Turkey), Geological Society, London, Special Publications, 173(1), 171-182, doi: 10.1144/GSL.SP.2000.173.01.08.
Zabelina, I., Koulakov, I., Amanatashvili, I., El Khrepy, S., and Al-Arifi, N. (2016), Seismic structure of the crust and uppermost mantle beneath Caucasus based on regional earthquake tomography, J. Asian Earth Sci., 119, 87-99.
Zandt, G., Leidig, M., Chmielowski, J., Baumont, D., and Yuan, X. (2003), Seismic detection and characterization of the Altiplano-Puna magma body, central Andes, Pure Appl. Geophys., 160(3), 789-807, doi: 10.1007/978-3-0348-8010-7_14.
Zhu, L., and Kanamori, H. (2000), Moho depth variation in southern California from teleseismic receiver functions, J. Geophys. Res. Solid Earth, 105(B2), 2969-2980, doi: 10.1029/1999JB900322.
Zor, E. (2008), Tomographic evidence of slab detachment beneath eastern Turkey and the Caucasus, Geophys. J. Int., 175(3), 1273-1282, doi: 10.1111/j.1365-246X.2008.03946.x.
Zor, E., Sandvol, E., Gürbüz, C., Türkelli, N., Seber, D., and Barazangi, M. (2003), The crustal structure of the East Anatolian plateau (Turkey) from receiver functions, Geophys. Res. Lett., 30(24), doi: 10.1029/2003GL018192.
李詩婷(2014),聯合接收函數與表面波頻散資料逆推高加索下方之岩石圈速度構造,國立臺灣大學理學院地質科學研究所碩士論文,共120頁。
林俞青(2010),亞美尼亞及高加索造山帶火成岩的地球化學特性與岩石成因,國立臺灣大學理學院地質科學研究所碩士論文,共113頁。
張宇涵(2014),喬治亞小高加索山區新生代火成岩之地球化學特性與岩石成因,國立臺灣大學理學院地質科學研究所碩士論文,共143頁。
許炘志(2013),以區域波形震源逆推探討高加索至東土耳其之應力變化,國立臺灣大學理學院地質科學研究所碩士論文,共124頁。
許哲豪(2016),以區域波形震源逆推探討黑海東部及小高加索扎瓦赫季高地之地震特性,國立臺灣大學理學院海洋研究所碩士論文,共109頁。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67032-
dc.description.abstract阿拉伯和歐亞大陸板塊自漸新世(約三千兩百萬年前)以來的碰撞形成了遍布第四紀火山的大高加索、小高加索與東北安那托利亞高原,為地質複雜的構造區塊。前人研究已經發現地殼厚度從安納托利亞往東北方向逐漸增加,在南喬治亞(小高加索和大高加索之間)達到最厚的52公里左右。然而,受限於稀疏的測站分布,只能對高加索地區的莫荷面空間變化粗略地解析,在高加索與鄰近地區,至今尚缺乏詳細的地殼構造研究。
  本論文蒐集並分析2012年1月至2016年6月期間的遠震資料,主要來自中研院地球所與臺大地質系分別在喬治亞與亞美尼亞新建置的寬頻地震網,觀測網涵蓋大部分的小高加索和第四紀火山,將小高加索區域的平均站間距加密至約30至40公里,另加入其他當地的寬頻地震網,以提升測站包覆性。本研究總共使用42個測站的高品質地震資料,利用時間域迭代法計算每個測站的P波接收函數推求研究區域各測站下方的地殼構造。
  使用H-κ疊加法所得的整體結果顯示,地殼厚度從東北安納托利亞高原的40公里朝東北方向增加,地殼最厚在東北小高加索與東大高加索下方,可達50至52公里,而莫荷面深度最淺的地方則在西喬治亞靠近黑海沿岸處(25至35公里)。此外,本研究在中部亞美尼亞高原的阿拉加茨火山和格加馬火山周圍觀測到區域性相對較淺的莫荷面(~32公里)與較高的地殼平均Vp/Vs(1.80至2.07),從逆推求得的一維速度模型也顯示該區底下有較厚的下部地殼低速構造,這些現象指示地殼的基性組成很高,或是下部地殼有部分熔融存在。在亞美尼亞莫荷面之下的上部地函也發現低速構造,此結果和前人的Pn波速度研究一致,而莫荷面附近的低速可能都與上湧地函的熱異常有關。本研究發現喬治亞南部地區的小高加索莫荷面呈深度較兩側淺的拱形(最淺處的莫荷面約39公里深),而且其中一測站在大約5公里深處有一明顯的低速層,需要進一步證實是否為鄰近扎瓦赫季高地底下的岩漿庫或熱液作用所致。
zh_TW
dc.description.abstractGeologically complex zones of the Greater Caucasus, Lesser Caucasus and NE Anatolian Plateau, where Quaternary volcanoes are abundant, have been formed by the continental collision between Arabia and Eurasia since Oligocene (~32 Ma). Previous studies have indicated that the crustal thickness increases from the NE Anatolia toward the northeast direction with the deepest Moho of ~52 km under the southern Georgia between the Lesser and Greater Caucasus. However, the spatial variation of Moho in the Caucasus can only be roughly constrained due to sparse seismic arrays. No estimates on detailed crustal structures have been made by far for the Caucasus region.
In this thesis, the data are collected and analyzed for tele-seismic events between January 2012 and June 2016 from a new broadband seismic network in Georgia and Armenia, which were supported by Academia Sinica and National Taiwan University. The average station interval in the Lesser Caucasus is improved to roughly 30-40 km and other broadband stations are also included for better coverage. A total of 42 high-quality stations are used in this study. P-wave receiver functions are calculated using time-domain iterative method for constraining the crustal structures beneath each station in the study area.
The results of H-κ sacking show that overall the crustal thickness increases toward NE from 40 km under the NE Anatolian Plateau to the maximum of ~50-52 km beneath the northeastern Lesser Caucasus and the eastern flank of Greater Caucasus. The shallowest Moho is located under western Lesser Caucasus near the cost of Black Sea (25-35 km). Moreover, locally thin crust (~32 km) and anomalously high Vp/Vs (1.80-2.07) that accompany a thick low-velocity layer in the lower crust from the 1-D velocity model inverted are found around the Volcano Aragats and Ghegam of central Armenia plateau, suggesting an overall high mafic content of crust or the presence of partial melt in the lower crust. Low velocity structures are also found under the Moho in Aremenia, which are consistent with previous Pn studies. Relatively low speeds around Moho are both probably associated with the thermal anomaly caused by upwelling of upper mantle. In southern Georgia of the Lesser Caucasus, an arched structure of Moho is observed, with shallowest Moho depth of ~39 km at the center and deepening toward east and west. There is apparent low-velocity layer at the depth of ~5 km, which require more evidences to confirm whether it is related to magma chamber or hydrothermal process under the Javakheti highland.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:17:51Z (GMT). No. of bitstreams: 1
ntu-106-R04224203-1.pdf: 19828621 bytes, checksum: 96b348869557f8f7987d3b0fa3fd679d (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iv
ABSTRACT v
目錄 vii
圖目錄 x
表目錄 xii
第1章 緒論 1
1.1 前言 1
1.2 研究區域之前人研究 2
1.2.1 地體構造演化 2
1.2.2 地質與構造環境 3
1.2.3 地震活動與主應力場 4
1.2.4 地殼構造 5
1.3 研究目的與方法 17
1.3.1 研究動機 17
1.3.2 研究手段與目標 17
1.4 論文內容 18
第2章 研究原理與方法 19
2.1 接收函數(Receiver Functions) 19
2.2 接收函數之計算 23
2.3 H-κ 疊加法 26
2.4 波形逆推一維速度模型 29
第3章 資料與分析 33
3.1 資料來源與測站分布 33
3.2 接收函數之地震資料分析 36
3.2.1 資料篩選與處理 36
3.2.2 時間域反摺積之參數設定 37
3.2.3 接收函數之分析 38
3.3 H-κ 疊加法之分析 40
3.3.1 權衡問題測試 40
3.3.2 可信度判斷 40
3.4 波形逆推之參數設定 43
3.4.1 初始速度模型之設定 43
3.4.2 逆推參數的設定 44
3.4.3 逆推模型之可信度判斷與莫荷面認定 44
第4章 研究結果 49
4.1 地殼厚度與地殼之平均Vp/Vs 49
4.2 喬治亞境內大高加索之速度構造 52
4.3 喬治亞境內小高加索之速度構造 54
4.4 亞美尼亞境內小高加索之速度構造 57
第5章 討論 60
5.1 小高加索與鄰近地區的地殼厚度和Vp/Vs 60
5.2 喬治亞境內大高加索的地殼構造 63
5.3 喬治亞境內小高加索的地殼構造 65
5.4 亞美尼亞境內小高加索的地殼構造 73
第6章 結論 79
參考文獻 81
附錄A 測站資訊 91
附錄B 地震目錄 93
附錄C TG地震網之波形品質 101
附錄D 波形資料之頻譜分析 103
附錄E 平滑莫荷面對H-κ之影響 106
附錄F 初始速度參考模型之比較 107
附錄G 高加索與鄰近地區的CRUST 2.0速度模型 110
附錄H 平滑參數對逆推測試之影響 112
附錄I 各測站之H-κ 分析結果 118
附錄J H-κ結果之網格化呈現 128
附錄K 方位角包覆性之限制 130
附錄L 波形逆推過程與結果(gw1.0) 134
dc.language.isozh-TW
dc.subject第四紀火山zh_TW
dc.subject接收函數zh_TW
dc.subject地殼構造zh_TW
dc.subject高加索zh_TW
dc.subject大陸碰撞zh_TW
dc.subjectreceiver functionen
dc.subjectQuaternary volcanoen
dc.subjectcontinental collisionen
dc.subjectcrustal structureen
dc.subjectCaucasusen
dc.title利用遠震接收函數探究小高加索與鄰近地區的地殼速度構造zh_TW
dc.titleVariations in Crustal Structure of the Lesser Caucasus and Surrounding Regions from Teleseismic Receiver Functionsen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃柏壽(Bor-Shouh Huang),陳伯飛(Po-Fei Chen),胡植慶(Jyr-Ching Hu),黃信樺(Hsin-Hua Huang)
dc.subject.keyword高加索,接收函數,地殼構造,大陸碰撞,第四紀火山,zh_TW
dc.subject.keywordCaucasus,receiver function,crustal structure,continental collision,Quaternary volcano,en
dc.relation.page142
dc.identifier.doi10.6342/NTU201703145
dc.rights.note有償授權
dc.date.accepted2017-08-14
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
19.36 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved