請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67031完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 舒貽忠(Yi-Chung Shu) | |
| dc.contributor.author | Jen-Kuei Chao | en |
| dc.contributor.author | 趙仁魁 | zh_TW |
| dc.date.accessioned | 2021-06-17T01:17:48Z | - |
| dc.date.available | 2018-08-20 | |
| dc.date.copyright | 2017-08-20 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-14 | |
| dc.identifier.citation | [1] S. R. Anton and H. A. Sodano. “A Review of Power Harvesting using Piezoelectric Materials (2003-2006).” Smart Materials and Structures, 16:R1–R21, 2007.
[2] A. Erturk and D. J. Inman. “Piezoelectric Energy Harvesting.” Wiley, 2011. [3] Y. B. Jeon, R. Sood, J. H. Jeong, and S. G. Kim. “MEMS Power Generator with Transverse Mode Thin Film PZT.” Sensors and Actuators A, 122:16–22, 2005. [4] A. Koka and H. A. Sodano. “High-Sensitivity Accelerometer Composed of Ultra-Long, Vertically Aligned Barium Titanate Nanowire Arrays.” Nature Communications, 4:2682, 2013. [5] Y. Qin, X. Wang, and Z. L. Wang. “Microfibre-Nanowire Hybrid Structure for Energy Scavenging.” Nature, 451:809–813, 2008. [6] U. Aridogan, I. Basdogan, and A. Erturk. “Multiple Patch-Based Broadband Piezoelectric Energy Harvesting on Plate-Based Structures.” Journal of Intelligent Material Systems and Structures, 25:1664–1680, 2014. [7] B. Bayik, U. Aridogan, I. Basdogan, and A. Erturk. “Equivalent Circuit Modeling of a Piezo-Patch Energy Harvester on a Thin Plate with AC-DC Conversion.” Smart Materials and Structures, 25:055015, 2016. [8] A. Bibo andM. F. Daqaq. “Energy Harvesting under Combined Aerodynamic and Base Excitations.” Journal of Sound and Vibration, 332:5086–5102, 2013. [9] M. Bryant, R. L. Mahtani, and E. Garcia. “Wake Synergies Enhance Performance in Aeroelastic Vibration Energy Harvesting.” Journal of Intelligent Material Systems and Structures, 23:1131–1141, 2012. [10] M. F. Lumentut and I. M. Howard. “Electromechanical Piezoelectric Power Harvester Frequency Response Modeling Using Closed-Form Boundary Value Methods.” IEEE/ASME Transactions on Mechatronics, 19:32–44, 2014. [11] C. J. Rupp, A. Evgrafov, K.Maute, and M. L. Dunn. “Design of Piezoelectric Energy Harvesting Systems: A Topology Optimization Approach Based on Multilayer Plates and Shells.” Journal of Intelligent Material Systems and Structures, 20:1923–1939, 2009. [12] J. T. Scruggs. “An Optimal Stochastic Control Theory for Distributed Energy Harvesting Networks.” Journal of Sound and Vibration, 320:707–725, 2009. [13] M. W. Shafer, R. MacCurdy, J. R. Shipley, D. Winkler, C. G. Guglielmo, and E. Garcia. “The Case for Energy Harvesting on Wildlife in Flight.” Smart Materials and Structures, 24:025031, 2015. [14] L. Zhao and Y. Yang. “Analytical Solutions for Galloping-Based Piezoelectric Energy Harvesters with Various Interfacing Circuits.” Smart Materials and Structures, 24:075023, 2015. [15] S. R. Anton, K. M. Farinholt, and A. Erturk. “Piezoelectret Foam-Based Vibration Energy Harvesting.” Journal of Intelligent Material Systems and Structures, 25:1681–1692, 2014. [16] M. S. S. Bafqi, R. Bagherzadeh, and M. Latifi. “Fabrication of Composite PVDF-ZnO Nanofiber Mats by Electrospinning for Energy Scavenging Application with Enhanced Efficiency.” Journal of Polymer Research, 22:130, 2015. [17] A. Mathers, K. S. Moon, and J. Yi. “A Vibration-Based PMN-PT Energy Harvester.” IEEE Sensors Journal, 9:731–739, 2009. [18] T. Ro¨odig and A. Sch¨onecker. “A Survey on Piezoelectric Ceramics for Generator Applications.” Journal of the American Ceramic Society, 93:901–912, 2010. [19] C. Sun, L. Qin, F. Li, and Q. M. Wang. “Piezoelectric Energy Harvesting using Single Crystal Pb(Mg1/3Nb2/3)O3−xPbTiO3 (PMN-PT) Device.” Journal of Intelligent Material Systems and Structures, 20:559–568, 2009. [20] A. Badel, A. Benayad, E. Lefeuvre, L. Lebrun, C. Richard, and D. Guyomar. “Single Crystals and Nonlinear Process for Outstanding Vibration-Powered Electrical Generators.” IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control, 53:673–684, 2006. [21] D. Guyomar, A. Badel, E. Lefeuvre, and C. Richard. “Toward Energy Harvesting Using Active Materials and Conversion Improvement by Nonlinear Processing.” IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control, 52:584–595, 2005. [22] P. H. Hsieh, C. H. Chen, and H. C. Chen. “Improving the Scavenged Power of Nonlinear Piezoelectric Energy Harvesting Interface at Off-Resonance by Introducing Switching Delay.” IEEE Transactions on Power Electronics, 30:3142–3155, 2015. [23] M. Lallart, D. J. Inman, and D. Guyomar. “Transient Performance of Energy Harvesting Strategies under Constant Force Magnitude Excitation.” Journal of Intelligent Material Systems and Structures, 21:1279–1291, 2010. [24] J. R. Liang and W. H. Liao. “Improved Design and Analysis of Self-Powered Synchronized Switch Interface Circuit for Piezoelectric Energy Harvesting Systems.” IEEE Transactions on Industrial Electronics, 59:1950–1960, 2012. [25] A. M. Wickenheiser and E. Garcia. “Power Optimization of Vibration Energy Harvesters Utilizing Passive and Active Circuits.” Journal of Intelligent Material Systems and Structures, 21:1343–1361, 2010. [26] W. J. Wu, A. M. Wickenheiser, T. Reissman, and E. Garcia. “Modeling and Experimental Verification of Synchronized Discharging Techniques for Boosting Power Harvesting from Piezoelectric Transducers.” Smart Materials and Structures, 18:055012, 2009. [27] Y. C. Shu and I. C. Lien, “Analysis of Power Output for Piezoelectric Energy Harvesting System.” Smart Materials and Structures, 15:1499-1512, 2006. [28] G. K. Ottman, H. F. Hofman, A. C. Bhatt and G. A. Lesieutre, “Adaptive Piezoelectric Energy Harvesting Circuit for Wireless Remote Power Supply.” IEEE Transactions on Power Electronics, 17:669-676, 2002. [29] G. K. Ottman, H. F. Hofman, A. C. Bhatt and G. A. Lesieutre, “Optimized Piezoelectric Energy Harvesting Circuit Using Step-Down Converter in Discontinuous Conduction Mode.” IEEE Transactions on Power Electronics, 18:696-703, 2003. [30] Y. C. Shu and I. C. Lien, “Efficiency of Energy Conversion for a Piezoelectric Power Harvesting System.” Journal of Intelligent Material Systems and Structures, 16:2429-2438, 2006. [31] C. Richard, D. Guyomar, D. Audigier and G. Ching, “Semi Passive Damping Using Continuous Switching of a Piezoelectric Device.” in Proc. SPIE, 3672:104-111, 1999. [32] D. Guyomar, A. Badel, E. Lefeuvre and C. Richard, “Toward Energy Harvesting Using Active Materials and Conversion Improvment by Nonlinear Processing.” IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control, 52:584-595, 2005. [33] Y. C. Shu, I. C. Lien and W. J. Wu, “An Improved Analysis of the SSHI Interface in Piezoelectric Energy Harvesting.” Smart Materials and Structures, 16:2253-2264, 2007. [34] I. C. Lien, Y. C. Shu, W. J. Wu, S. M. Shiu and H. C. Lin, “Revisit of Series-SSHI with Comparisons to Other Interfacing Circuits in Piezoelectric Energy Harvesting.” Smart Materials and Structures, 19:125009, 2010. [35] V. R. Challa, M. G. Prasad, and F. T. Fisher. “Towards an Autonomous Self-Tuning Vibration Energy Harvesting Device forWireless Sensor Network Applications.” Smart Materials and Structures, 20:025004, 2011. [36] A. Erturk, J. M. Renno, and D. J. Inman. “Modeling of Piezoelectric Energy Harvesting from an LShaped Beam-mass Structure with an Application to UAVs.” Journal of Intelligent Material Systems and Structures, 20:529–544, 2009. [37] M. A. Karami and D. J. Inman. “Parametric Study of Zigzag Microstructure for Vibrational Energy Harvesting.” Journal of Microelectromechanical Systems, 21:145–160, 2012. [38] M. Lallart, S. R. Anton, and D. J. Inman. “Frequency Self-tuning Scheme for Broadband Vibration Energy Harvesting.” Journal of Intelligent Material Systems and Structures, 21:897–906, 2010. [39] A. M. Wickenheiser and E. Garcia. “Broadband Vibration-Based Energy Harvesting Improvement through Frequency Up-Conversion by Magnetic Excitation.” Smart Materials and Structures, 19:065020, 2010. [40] D. Castagnetti. “Experimental Modal Analysis of Fractal-Inspired Multi-Frequency Structures for Piezoelectric Energy Converters.” Smart Materials and Structures, 21:094009, 2012. [41] Q. Ou, X. Chen, S. Gutschmidt, A. Wood, N. Leigh, and A. F. Arrieta. “An Experimentally Validated Double-Mass Piezoelectric CantileverModel for Broadband Vibration-Based Energy Harvesting.” Journal of Intelligent Material Systems and Structures, 23:117–126, 2012. [42] S. Roundy, E. S. Leland, J. Baker, E. Carleton, E. Reilly, E. Lai, B. Otis, J. M. Rabaey, P. K. Wright, and V. Sundararajan. “Improving Power Output for Vibration-Based Energy Scavengers.” IEEE Pervasive Computing, 4:28–36, 2005. [43] H.Wu, L. Tang, Y. Yang, and C. K. Soh. “A Novel Two-Degrees-of-Freedom Piezoelectric Energy Harvester.” Journal of Intelligent Material Systems and Structures, 24:357–368, 2013. [44] X. Xiong and S. O. Oyadiji. “Modal Optimization of Doubly Clamped Base-Excited Multilayer Broadband Vibration Energy Harvesters.” Journal of Intelligent Material Systems and Structures, 26:221–2241, 2015. [45] W. Zhou, G. R. Penamalli, and L. Zuo. “An Efficient Vibration Energy Harvester with a Multi-Mode Dynamic Magnifier.” Smart Materials and Structures, 21:015014, 2012. [46] F. Cottone, H. Vocca, and L. Gammaitoni. “Nonlinear Energy Harvesting.” Physical Review Letters, 102:080601, 2009. [47] A. Erturk, J. Hoffmann, and D. J. Inman. “A Piezomagnetoelastic Structure for Broadband Vibration Energy Harvesting.” Applied Physics Letters, 94:254102, 2009. [48] R. L. Harne, A. Sun, and K.W.Wang. “Leveraging Nonlinear Saturation-Based Phenomena in an L-Shaped Vibration Energy Harvesting System.” Journal of Sound and Vibration, 363:517–531, 2016. [49] S. C. Stanton, A. Erturk, B. P. Mann, E. H. Dowell, and D. J. Inman. “Nonlinear Nonconservative Behavior and Modeling of Piezoelectric Energy Harvesters Including Proof Mass Effects.” Journal of Intelligent Material Systems and Structures, 23:183–199, 2012. [50] S. M. Shahruz. “Design ofMechanical Band-Pass Filters with Large Frequency Bands for Energy Scavenging.” Mechatronics, 16:523–531, 2006. [51] M. Ferrari, V. Ferrari, M. Guizzetti, D. Marioli, and A. “Taroni. Piezoelectric Multifrequency Energy Converter for Power Harvesting in Autonomous Microsystems.” Sensors and Actuators A, 142:329–335, 2008. [52] H. J. Song, Y. T. Choi, A. S. Purekar, and N. M. Wereley. “Performance Evaluation of Multi-tier Energy Harvesters UsingMacro-fiber Composite Patches.” Journal of Intelligent Material Systems and Structures, 20:2077–2088, 2009. [53] F. Amoroso, R. Pecora, M. Ciminello, and A. Concilio. “An Original Device for Train Bogie Energy Harvesting: a Real Application Scenario.” Smart Structures and Systems, 16:383–399, 2015. [54] D. Castagnetti. “A Wideband Fractal-Inspired Piezoelectric Energy Converter: Design, Simulation and Experimental Characterization.” Smart Materials and Structures, 22:094024, 2013. [55] P. Gardonio and M. Zilletti. “Vibration Energy Harvesting from an Array of Flexible Stalks Exposed to Airflow: a Theoretical Study.” Smart Materials and Structures, 25:035014, 2016. [56] Y. Kuang and M. Zhu. “Characterisation of a Knee-Joint Energy Harvester Powering a Wireless Communication Sensing Node.” Smart Materials and Structures, 25:055013, 2016. [57] B. Li and J. H. You. “Experimental Study on Self-Powered Synchronized Switch Harvesting on Inductor Circuits for Multiple Piezoelectric Plates in Acoustic Energy Harvesting.” Journal of Intelligent Material Systems and Structures, 26:1646–1655, 2015. [58] J. W. Moon, H. J. Jung, K. H. Baek, D. Song, S. B. Kim, J. H. Kim, and T. H. Sung. “Optimal Design and Application of a Piezoelectric Energy Harvesting System Using Multiple Piezoelectric Modules.” Journal of Electroceramics, 32:396–403, 2014. [59] M. Pozzi. “Magnetic Plucking of Piezoelectric Bimorphs for a Wearable Energy Harvester.” Smart Materials and Structures, 25:045008, 2016. [60] W. Wang, R. J. Huang, C. J. Huang, and L. F. Li. “Energy Harvester Array Using Piezoelectric Circular Diaphragm for Rail Vibration.” Acta Mechanica Sinica, 30:884–888, 2014. [61] H. Xia and R. Chen. “Design and Analysis of a Scalable Harvesting Interface for Multi-Source Piezoelectric Energy Harvesting.” Sensors and Actuators A, 218:33–40, 2014. [62] Z. Xiao, T. Q. Yang, Y. Dong, and X. C. Wang. “Energy Harvester Array Using Piezoelectric Circular Diaphragm for Broadband Vibration.” Applied Physics Letters, 104:223904, 2014. [63] Z. Yang and J. Yang. “Connected Vibrating Piezoelectric Bimorph Beams as a Wide-Band Piezoelectric Power Harvester.” Journal of Intelligent Material Systems and Structures, 20:569–574, 2009. [64] J. Zhang, L. Kong, L. Zhang, F. Li, W. Zhou, S. Ma, and L. Qin. “A Novel Ropes-Driven Wideband Piezoelectric Vibration Energy Harvester.” Applied Sciences, 6:402, 2016. [65] I. C. Lien and Y. C. Shu. “Array of Piezoelectric Energy Harvesting by Equivalent Impedance Approach.” Smart Materials and Structures, 21:082001, 2012. [66] H. C. Lin, P. H. Wu, I. C. Lien, and Y. C. Shu. “Analysis of an Array of Piezoelectric Energy Harvesters Connected in Series.” Smart Materials and Structures, 22:094026, 2013. [67] W. Al-Ashtari, M. Hunstig, T. Hemsel, and W. Sextro. “Enhanced Energy Harvesting Using Multiple Piezoelectric Elements: Theory and Experiments.” Sensors and Actuators A, 200:138–146, 2013. [68] M. Ferrari, V. Ferrari, M. Guizzetti, D. Marioli, and A. Taroni. “Piezoelectric Multifrequency Energy Converter for Power Harvesting in Autonomous Microsystems.” Sensors and Actuators A, 142:329–335, 2008. [69] M. F. Lumentut, L. A. Francis, and I. M. Howard. “Analytical Techniques for Broadband Multielectromechanical Piezoelectric Bimorph Beams with Multifrequency Power Harvesting.” IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control, 59:2555–2568, 2012. [70] J. W. Moon, H. J. Jung, K. H. Baek, D. Song, S. B. Kim, J. H. Kim, and T. H. Sung. “Optimal Design and Application of a Piezoelectric Energy Harvesting System Using Multiple Piezoelectric Modules.” Journal of Electroceramics, 32:396–403, 2014. [71] S. M. Shahruz. “Design of Mechanical Band-Pass Filters with Large Frequency Bands for Energy Scavenging.” Mechatronics, 16:523–531, 2006. [72] H. J. Song, Y. T. Choi, A. S. Purekar, and N. M. Wereley. “Performance Evaluation of Multi-tier Energy Harvesters Using Macro-fiber Composite Patches.” Journal of Intelligent Material Systems and Structures, 20:2077–2088, 2009. [73] W. Wang, R. J. Huang, C. J. Huang, and L. F. Li. “Energy Harvester Array Using Piezoelectric Circular Diaphragm for Rail Vibration.” Acta Mechanica Sinica, 30:884–888, 2014. [74] H. Xia and R. Chen. “Design and Analysis of a Scalable Harvesting Interface for Multi-Source Piezoelectric Energy Harvesting.” Sensors and Actuators A, 218:33–40, 2014. [75] Z. Xiao, T. Q. Yang, Y. Dong, and X. C. Wang. “Energy Harvester Array Using Piezoelectric Circular Diaphragm for Broadband Vibration.” Applied Physics Letters, 104:223904, 2014. [76] H. Xue, Y. T. Hu, and Q. M. Wang. “Broadband Piezoelectric Energy Harvesting Devices Using Multiple Bimorphs with Different Operating Frequencies.” IEEE Transaction on Ultrasonics Ferroelectrics and Frequency Control, 55:2104–2108, 2008. [77] Z. Yang and J. Yang. “Connected Vibrating Piezoelectric Bimorph Beams as a Wide-Band Piezoelectric Power Harvester.” Journal of Intelligent Material Systems and Structures, 20:569–574, 2009. [78] 林蕙君, “串聯陣列式壓電振動子能量擷取系統之分析研究”, 國立臺灣大學應用力學研究所碩士論文, 2012. [79] 連益慶, “陣列式壓電振動能量擷取系統在不同介面電路下之動態特性分析研究”, 國立臺灣大學應用力學研究所博士論文, 2012. [80] 陳彥禎, “混合陣列式壓電振子應用於能量擷取之實驗驗證”, 國立臺灣大學應用力學研究所碩士論文, 2017. [81] 李秉祐, “串並聯混合型陣列式壓電能量擷取系統之寬頻開關設計”, 國立臺灣大學應用力學研究所碩士論文, 2016. [82] 陳佳慧, 黃國華, “以溶膠-凝膠法製備鋯鈦酸鉛薄膜作為生物感測器之研究”, 國立交通大學材料科學與工程學系奈米科技碩博士班畢業論文, 2004. [83] 莊為傑, “不同力電耦合強度壓電振子應用於能量擷取之研究”, 台灣大學應用力學研究所碩士論文, 2016. [84] 吳秉憲 “發展同步電荷萃取介面電路之陣列式壓電振動能量擷取系統” 台灣大學應用力學研究所博士論文, in preparation. [85] P. H. Wu and Y. C. Shu. “Finite element modeling of electrically rectified piezoelectric energy harvesters.” Smart Materials and Structures 24:094008, 2015. [86] 莊欽雄, “陣列式壓電能量擷取系統之半自動化人機介面設計”, 台灣大學應用力學研究所碩士論文, 2015. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67031 | - |
| dc.description.abstract | 本論文主要在探討中弱力電耦合的串並聯混合型陣列式壓電能量擷取系統在搭配電感並聯同步切換電路後的成效,並與搭配標準電路時做比較。回顧過去文獻可知,強力電耦合振動子在搭配兩種電路之下成效差異不大,然而,中弱力電耦合或是弱力電耦合就會有明顯的差異。因此若將數根性質近似的懸臂樑壓電振動子之短路共振頻由小到大以一固定間隔差距遞增,則各串並聯型態功率峰值所對應到的頻率能恰巧地被錯開,並搭配頻率偵測與開關控制技術,非常有效的增加了頻寬,與單根懸臂樑壓電能量擷取系統相比,擷取功率也有明顯的提升。
本篇論文以理論解析解開始,並輔以PSpice電路模擬軟體、實際實驗來做驗證,比較在中弱力電耦合之下,串並聯混合型陣列式壓電能量擷取系統在搭配電感並聯同步切換電路以及標準電路之下的成效比較。最後發現,無論是理論預測或是實際實驗結果,都呈現出在搭載電感並聯同步切換電路下,與搭載標準電路之下相比,其各峰功率、平均功率、頻寬上皆有較優良的成效。 | zh_TW |
| dc.description.abstract | The present thesis investigates the behavior of mixed parallel-series connection of weakly coupled piezoelectric energy harvesters attached to the synchronized switch harvesting on inductor (SSHI) circuit. The thesis is motivated by the fact that power of a single piezoelectric oscillator with weak electromechanical coupling is able to be boosted by the SSHI circuit. Hence, the results from the mixed SSHI array are expected to be superior to the standard array system. Specifically, multiple piezoelectric oscillators are prepared such that their natural frequencies are different and sequentially arranged. Thus, the peaks of power of the mixed array with specific electric connection can be tuned to be uniformly distributed and the switching between different array configurations can be realized by frequency sensing and circuit switching techniques. Thus, both power and bandwidth are expected to be further improved if the SSHI circuit is implemented for the case of weak electromechanical coupling.
The thesis starts with the development of theoretical model and the derivation of analytic estimate of harvested power. The analytic results are validated by PSPICE circuit simulation. In addition, the experimental validation is preformed and found in good agreement with analytic estimate. The results show there is significant improvement on both harvested power and bandwidth for mixed SSHI arrays in comparison to the standard array system as long as the electromechanical coupling is weak or medium weak. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T01:17:48Z (GMT). No. of bitstreams: 1 ntu-106-R04543002-1.pdf: 6260727 bytes, checksum: f43a017067d783c5fc4425cc023a8448 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iii 目錄 iv 圖目錄 vi 表目錄 ix Chapter 1 導論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.3 論文架構 5 Chapter 2 壓電振動子理論 6 2.1 壓電效應 6 2.2 線性壓電材料之本構方程式 8 2.3 單根懸臂樑壓電振動子之數學模型 10 2.3.1 雙層極性相反之壓電懸臂樑(雙層串聯組態) 12 2.3.2 雙層極性相同之壓電懸臂樑(雙層並聯組態) 15 2.4 壓電振子之等效電路模型 17 2.5 單根懸臂樑壓電振動子搭配標準電路分析 20 2.6 單根懸臂樑壓電振動子搭配電感並聯同步切換電路分析 24 Chapter 3 陣列式串並聯混合型壓電能量擷取系統之交流轉直流電路分析 32 3.1 標準電路之陣列式串並聯混合型壓電能量擷取系統 33 3.2 P-SSHI電路之陣列式串並聯混合型壓電能量擷取系統 41 Chapter 4 模型驗證 50 4.1 標準電路之陣列式串並聯混合型壓電能量擷取系統模型驗證 52 4.2 P-SSHI電路之陣列式串並聯混合型壓電能量擷取系統模型驗證 57 Chapter 5 實驗驗證與分析 63 5.1 實驗儀器 64 5.2 實驗流程 70 5.2.1 Labview使用介紹 70 5.2.2 單根懸臂樑壓電振動子實驗流程-求等效參數 71 5.2.3 串並聯混合型陣列式壓電能量擷取系統實驗流程 74 5.3 實驗結果與討論 82 5.3.1 中弱力電耦合切換成效比較 83 5.3.2 中弱力電耦合搭配P-SSHI電路下最佳阻抗與固定阻抗比較 89 5.4 中弱力電耦合成效比較(I) 93 5.5 中弱力電耦合成效比較(II) 98 Chapter 6 中弱力電耦合之串並聯混合型陣列式壓電能量擷取系統之設計分析 104 6.1 頻率間隔上的探討 104 6.2 力電耦合強度的探討 107 Chapter 7 結論與未來展望 111 7.1 結論 111 7.2 未來展望 115 REFERENCE 116 | |
| dc.language.iso | zh-TW | |
| dc.subject | 電感並聯同步切換電路 | zh_TW |
| dc.subject | 串並聯混合壓電振動能量擷取系統 | zh_TW |
| dc.subject | 阻抗匹配 | zh_TW |
| dc.subject | Mixed parallel-series connection of piezoelectric energy harvesting system | en |
| dc.subject | Synchronized switch harvesting on inductor circuit | en |
| dc.subject | Impedance matching | en |
| dc.title | 串並聯混合陣列壓電能量擷取搭配電感並聯同步切換電路之成效比較 | zh_TW |
| dc.title | Comparison of the Effect Improved by Mixed Parallel-Series Connection of Piezoelectric Energy Harvesters under the Synchronized Switch Harvesting on Inductor Circuit | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 謝秉璇,蘇偉? | |
| dc.subject.keyword | 串並聯混合壓電振動能量擷取系統,電感並聯同步切換電路,阻抗匹配, | zh_TW |
| dc.subject.keyword | Mixed parallel-series connection of piezoelectric energy harvesting system,Synchronized switch harvesting on inductor circuit,Impedance matching, | en |
| dc.relation.page | 123 | |
| dc.identifier.doi | 10.6342/NTU201703132 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-08-14 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 6.11 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
