Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67030
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor龔源成
dc.contributor.authorChih-Chieh Chienen
dc.contributor.author簡志傑zh_TW
dc.date.accessioned2021-06-17T01:17:46Z-
dc.date.available2017-08-25
dc.date.copyright2017-08-25
dc.date.issued2017
dc.date.submitted2017-08-14
dc.identifier.citationAngelier, J., Lee, J.-C., Chu, H.-T., Hu, J.-C., Lu, C.-Y., Chan, Y.-C., Tin-Jai, L., Font, Y., Deffontaines, B. t., and Yi-Ben, T., 2001, Le séisme de Chichi (1999) et sa place dans l'orogène de Taiwan: Comptes Rendus de l'Académie des Sciences - Series IIA - Earth and Planetary Science, v. 333, no. 1, p. 5-21.
Bensen, G. D., Ritzwoller, M. H., Barmin, M. P., Levshin, A. L., Lin, F., Moschetti, M. P., Shapiro, N. M., and Yang, Y., 2007, Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements: Geophysical Journal International, v. 169, no. 3, p. 1239-1260.
Brocher, T. M., and Christensen, N. I., 1990, Seismic anisotropy due to preferred mineral orientation observed in shallow crustal rocks in southern Alaska: Geology, v. 18, no. 8, p. 737-740.
Chang, C.-P., Chang, T.-Y., Angelier, J., Kao, H., Lee, J.-C., and Yu, S.-B., 2003, Strain and stress field in Taiwan oblique convergent system: constraints from GPS observation and tectonic data: Earth and Planetary Science Letters, v. 214, no. 1-2, p. 115-127.
Chang, E. T. Y., Liang, W.-T., and Tsai, Y.-B., 2009, Seismic shear wave splitting in upper crust characterized by Taiwan tectonic convergence: Geophysical Journal International, v. 177, no. 3, p. 1256-1264.
Chen, L.-W., Chen, Y.-N., Gung, Y., Lee, J.-C., and Liang, W.-T., 2017, Strong near-surface seismic anisotropy of Taiwan revealed by coda interferometry: Earth and Planetary Science Letters. (in reversion)
Chen, K.-X., Chen, P.-F., Chen, L.-W., Yao, H., Fang, H., and Su, P.-L., 2016, South Ilan Plain High-Resolution 3-D S-Wave Velocity from Ambient Noise Tomography: Terrestrial, Atmospheric and Oceanic Sciences, v. 27, no. 3, p. 375.
Chiao, L.-Y., and Kuo, B.-Y., 2001, Multiscale seismic tomography: Geophysical Journal International, v. 145, no. 2, p. 517-527.
Chiao, L.-Y., and Liang, W.-T., 2003, Multiresolution parameterization for geophysical inverse problems: Geophysics, v. 68, no. 1, p. 199-209.
Crampin, S., 1994, The fracture criticality of crustal rocks: Geophysical Journal International, v. 118, no. 2, p. 428-438.
Crampin, S., and Zatsepin, S. V., 1997, Changes of Strain before Earthquakes : The Possibility of Routine Monitoring of Both Long-Term and Short-Term Precursors: Journal of Physics of the Earth, v. 45, no. 1, p. 41-66.
Dahlen, F., and Tromp, J., 1998, Theoretical global seismology, Princeton university press.
Godfrey, N. J., Christensen, N. I., and Okaya, D. A., 2000, Anisotropy of schists: Contribution of crustal anisotropy to active source seismic experiments and shear wave splitting observations: Journal of Geophysical Research: Solid Earth, v. 105, no. B12, p. 27991-28007.
Huang, B.-S., Huang, W.-G., Liang, W.-T., Rau, R.-J., and Hirata, N., 2006, Anisotropy beneath an active collision orogen of Taiwan: Results from across islands array observations: Geophysical Research Letters, v. 33, no. 24.
Huang, H.-H., Wu, Y.-M., Song, X., Chang, C.-H., Lee, S.-J., Chang, T.-M., and Hsieh, H.-H., 2014, Joint Vp and Vs tomography of Taiwan: Implications for subduction-collision orogeny: Earth and Planetary Science Letters, v. 392, p. 177-191.
Huang, T.-Y., Gung, Y., Kuo, B.-Y., Chiao, L.-Y., and Chen, Y.-N., 2015, Layered deformation in the Taiwan orogen: Science, v. 349, no. 6249, p. 720-723.
Huang, T.-Y., Gung, Y., Liang, W.-T., Chiao, L.-Y., and Teng, L. S., 2012, Broad-band Rayleigh wave tomography of Taiwan and its implications on gravity anomalies: Geophysical Research Letters, v. 39, no. 5.
Johnston, J. E., and Christensen, N. I., 1995, Seismic anisotropy of shales: Journal of Geophysical Research: Solid Earth, v. 100, no. B4, p. 5991-6003.
Keilis-Borok, V., 1989, Recording, identification, and measurement of surface wave parameters, Seismic surface waves in a laterally inhomogeneous Earth, Springer, p. 131-182.
Kim, K.-H., Chiu, J.-M., Pujol, J., Chen, K.-C., Huang, B.-S., Yeh, Y.-H., and Shen, P., 2005, Three-dimensional VP and VS structural models associated with the active subduction and collision tectonics in the Taiwan region: Geophysical Journal International, v. 162, no. 1, p. 204-220.
Kuo-Chen, H., Wu, F. T., Okaya, D., Huang, B.-S., and Liang, W.-T., 2009, SKS/SKKS splitting and Taiwan orogeny: Geophysical Research Letters, v. 36, no. 12.
Kuo-Chen, H., Wu, F. T., and Roecker, S. W., 2012, Three-dimensional P velocity structures of the lithosphere beneath Taiwan from the analysis of TAIGER and related seismic data sets: Journal of Geophysical Research: Solid Earth, v. 117, no. B6.
Kuo, B.-Y., Chen, C.-C., and Shin, T.-C., 1994, Split S waveforms observed in northern Taiwan: Implications for crustal anisotropy: Geophysical Research Letters, v. 21, no. 14, p. 1491-1494.
Lin, A. T., and Watts, A. B., 2002, Origin of the West Taiwan basin by orogenic loading and flexure of a rifted continental margin: Journal of Geophysical Research: Solid Earth, v. 107, no. B9, p. ETG 2-1-ETG 2-19.
Okaya, D., Christensen, N. I., Ross, Z. E., and Wu, F. T., 2016, Terrane-controlled crustal shear wave splitting in Taiwan: Geophysical Research Letters, v. 43, no. 2, p. 556-563.
Rau, R.-J., Liang, W.-T., Kao, H., and Huang, B.-S., 2000, Shear wave anisotropy beneath the Taiwan orogen: Earth and Planetary Science Letters, v. 177, no. 3–4, p. 177-192.
Rau, R.-J., and Wu, F. T., 1995, Tomographic imaging of lithospheric structures under Taiwan: Earth and Planetary Science Letters, v. 133, no. 3, p. 517-532.
Seats, K. J., Lawrence, J. F., and Prieto, G. A., 2012, Improved ambient noise correlation functions using Welch's method: Geophysical Journal International, v. 188, no. 2, p. 513-523.
Shapiro, N. M., Campillo, M., Stehly, L., and Ritzwoller, M. H., 2005, High-Resolution Surface-Wave Tomography from Ambient Seismic Noise: Science, v. 307, no. 5715, p. 1615-1618.
Snieder, R., and Wapenaar, K., 2010, Imaging with ambient noise: Physics Today, v. 63, no. 9, p. 44-49.
Stehly, L., Campillo, M., and Shapiro, N. M., 2006, A study of the seismic noise from its long-range correlation properties: Journal of Geophysical Research: Solid Earth, v. 111, no. B10.
Teng, L. S., 1990, Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan: Tectonophysics, v. 183, no. 1, p. 57-76.
Weaver, R., and Lobkis, O., 2002, On the emergence of the Green's function in the correlations of a diffuse field: pulse-echo using thermal phonons: Ultrasonics, v. 40, no. 1–8, p. 435-439.
Weaver, R. L., 2005, Information from Seismic Noise: Science, v. 307, no. 5715, p. 1568-1569.
Weaver, R. L., and Lobkis, O. I., 2001, Ultrasonics without a Source: Thermal Fluctuation Correlations at MHz Frequencies: Physical Review Letters, v. 87, no. 13, p. 134301.
Wu, Y.-M., Chang, C.-H., Zhao, L., Shyu, J. B. H., Chen, Y.-G., Sieh, K., and Avouac, J.-P., 2007, Seismic tomography of Taiwan: Improved constraints from a dense network of strong motion stations: Journal of Geophysical Research: Solid Earth, v. 112, no. B8.
You, S.-H., Gung, Y., Chiao, L.-Y., Chen, Y.-N., Lin, C.-H., Liang, W.-T., and Chen, Y.-L., 2010, Multiscale Ambient Noise Tomography of Short-Period Rayleigh Waves across Northern Taiwan: Bulletin of the Seismological Society of America, v. 100, no. 6, p. 3165-3173.
Yu, S.-B., Chen, H.-Y., and Kuo, L.-C., 1997, Velocity field of GPS stations in the Taiwan area: Tectonophysics, v. 274, no. 1, p. 41-59.
何春蓀 (1982), 臺灣地體構造的演變,臺灣地質圖說明書,經濟部中央地質調查所.
顏滄波 (1967), 臺灣大南澳片岩之構造分析,臺灣省地質調查所彙刊,第十八號,第1~100頁.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67030-
dc.description.abstract本研究利用周遭噪訊層析成像,自噪訊中萃取短週期(3-7秒)雷利波計算經驗格林函數,檢視臺灣本島淺部地殼(<10公里)剪力波速度構造及震波非均向性。震波資料來自2006-2007年間六個不同觀測網,為了增加波線覆蓋程度,首次計算寬頻與短週期資料之間的交互相關函數,並透過多重尺度小波逆推,建構臺灣淺部地殼三維均向與方位非均向性剪力波速度模型。
均向速度方面,整體淺部地殼的剪力波速度側向變化強烈,且速度分布與地表地質十分吻合,高速異常帶主要分布在中央山脈,速度約3.0-3.5 km/s,低速異常帶分布在桃園臺地、彰化平原、嘉南平原與花東縱谷,速度約1.5-2.3 km/s,其中位在嘉南平原的低速異常帶可延續至深度5-7公里。非均向性部分,地殼中的非均向性大致可分為(1)主要反映岩層中裂隙,導致快軸方向平行最大主應力型態與(2)受面理差異排列主導的構造相關型態。研究成果顯示,臺灣淺部地殼的剪力波方位非均向性快軸方向主要沿著造山帶走向,與近地表非均向性量測成果相比,我們認為快軸方向平行最大主應力的非均向性主要侷限在深度1公里以內。
zh_TW
dc.description.abstractIn this study, we aim to better constrain the shallow seismic structure (<10 km) of Taiwan by utilizing the short period (3-7 seconds) empirical Green’s functions (EGFs) of Rayleigh waves extracted from ambient seismic noise. To improve the data coverage, continuous data recorded by 6 seismic networks during the time period from 2006 to 2007 are used to derive the EGFs between all the cross-network station pairs. With this unprecedented data set, we are able to build up high resolution 3-D Vs and Vs azimuthal anisotropy models for the shallow crust of Taiwan, using a wavelet-based multi-scale inversion technique.
Robust features both in Vs and Vs anisotropy variations of the shallow crust are obtained in the resulting 3-D models. The strong Vs lateral variations are closely related to the surface geology, and the patterns of Vs anisotropy are mostly dominated by structure-related anisotropy, with fast polarization direction generally parallel to the mountain ranges. With the new results, and our recent studies with broad-band EGFs and borehole noise interferometry, we conclude that the stress-aligned anisotropy is likely confined in the near-surface depths (< ~1 km).
en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:17:46Z (GMT). No. of bitstreams: 1
ntu-106-R04224201-1.pdf: 11878443 bytes, checksum: 9861be7b55c1c8ddb70094e05d15b027 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents中文摘要 III
Abstract IV
第1章、 緒論 1
1.1. 引言 1
1.2. 周遭噪訊層析成像 1
1.3. 震波非均向性 2
第2章、 地體架構與區域地質 12
第3章、 資料簡介 16
第4章、 理論背景與資料處理 18
4.1. 理論背景 18
4.2. 資料前置處理 20
4.3. CCF計算與疊加 20
4.4. 表面波頻散分析 21
4.4.1. 群速度量測 21
4.4.2. 相速度量測 22
4.4.3. 資料篩選 23
第5章、 多重尺度小波逆推 28
5.1. 多重尺度小波逆推 28
5.2. 方位非均向性 29
第6章、 成果與討論 32
6.1. 二維雷利波速度構造 32
6.1.1. 速度構造成果 32
6.1.2. 模型測試 32
6.2. 三維剪力波速度構造 33
6.2.1. 速度構造成果 33
6.2.2. 模型測試與比較 34
第7章、 結論 50
參考文獻 51
附錄、觀測網資訊 56
中央氣象局短週期地震觀測網 56
新竹微震觀測網 58
陽明山微震觀測網 58
中央氣象局寬頻地震觀測網 59
臺灣地體動力整合研究計畫 60
臺灣寬頻地震觀測網 61
dc.language.isozh-TW
dc.subject周遭噪訊層析成像zh_TW
dc.subject剪力波方位非均向性zh_TW
dc.subject臺灣淺部地殼地震地體構造zh_TW
dc.subjectambient seismic noise tomographyen
dc.subjectVs azimuthal anisotropyen
dc.subjectshallow seismic structure of Taiwanen
dc.title利用周遭噪訊層析成像探討臺灣淺部地殼構造zh_TW
dc.titleShallow Seismic Structure of Taiwan Constrained by Ambient Seismic Noisesen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee喬凌雲,郭本垣,梁文宗,曾泰琳
dc.subject.keyword周遭噪訊層析成像,剪力波方位非均向性,臺灣淺部地殼地震地體構造,zh_TW
dc.subject.keywordambient seismic noise tomography,Vs azimuthal anisotropy,shallow seismic structure of Taiwan,en
dc.relation.page61
dc.identifier.doi10.6342/NTU201702613
dc.rights.note有償授權
dc.date.accepted2017-08-14
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
11.6 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved