請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6702完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 呂紹俊(Shao-Chun Lu) | |
| dc.contributor.author | Huai-Tzu Li | en |
| dc.contributor.author | 黎懷慈 | zh_TW |
| dc.date.accessioned | 2021-05-17T09:16:34Z | - |
| dc.date.available | 2012-09-19 | |
| dc.date.available | 2021-05-17T09:16:34Z | - |
| dc.date.copyright | 2012-09-19 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-31 | |
| dc.identifier.citation | 高品筠(2008) 顆粒性白血球群落刺激因子可刺激Akt/GSK3β/NFκB的訊息傳遞以抑制內毒素引起之過渡活化的微膠細胞。慈濟大學藥理暨毒理學研究所
蔡雯茹(2010) SB203580增加G-CSF mRNA的穩定度進而增強巨噬細胞中LPS誘發G-CSF的產生。台大灣大學醫學院生物化學暨分子生物學研究所 黃宇澤(2010) 探討LPS刺激的小鼠聚噬細胞中Oct2在G-CSF表現過程中所扮演的角色。台大灣大學醫學院生物化學暨分子生物學研究所 楊惠晴(2011) MEK-ERK-C/EBPβ在巨噬細胞中對脂多醣誘導G-CSF表現的必要角色。台大灣大學醫學院生物化學暨分子生物學研究所 Adams, J.L., Boehm, J.C., Kassis, S., Gorycki, P.D., Webb, E.F., Hall, R., Sorenson, M., Lee, J.C., Ayrton, A., Griswold, D.E., et al. (1998). Pyrimidinylimidazole inhibitors of CSBP/p38 kinase demonstrating decreased inhibition of hepatic cytochrome P450 enzymes. Bioorg Med Chem Lett. 8, 3111-3116. Anderson, P. (2010). Post-transcriptional regulons coordinate the initiation and resolution of inflammation. Nat Rev Immunol 10, 24-35. Asaduzzaman, M., Wang, Y., and Thorlacius, H. (2008). Critical role of p38 mitogen-activated protein kinase signaling in septic lung injury. Crit Care Med 36, 482-488. Aulock, S., Diterich, I., Hareng, L., and Hartung, T. (2004). G-CSF: Boosting endogenous production - a new strategy? Curr. Opin. Investig. Drugs 5, 1148-1152. Badger, A.M., Bradbeer, J.N., Votta, B., Lee, J.C., Adams, J.L., and Griswold, D.E. (1996). Pharmacological profile of SB 203580, a selective inhibitor of cytokine suppressive binding protein/p38 kinase, in animal models of arthritis, bone resorption, endotoxin shock and immune function. J Pharmacol Exp Ther. 279, 1451-1461. Balamayooran, G., Batra, S., Fessler, M.B., Happel, K.I., and Jeyaseelan, S. (2010). Mechanisms of neutrophil accumulation in the lungs against bacteria. Am J Respir Cell Mol Biol 43, 5-16. Baldassare, J.J., Bi, Y., and Bellone, C.J. (1999). The role of p38 mitogen-activated protein kinase in IL-1 beta transcription. J Immumol 162, 5367-5373. Boneberg, E.M., Hareng, L., Gantner, F., Wendel, A., and Hartung, T. (2000). Human monocytes express functional receptors for granulocyte colony-stimulating factor that mediate suppression of monokines and interferon-gamma. Blood 95, 270-276. Boneberg, E.M., and Hartung, T. (2002a). Granulocyte colony-stimulating factor attenuates LPS-stimulated IL-1beta release via suppressed processing of proIL-1beta, whereas TNF-alpha release is inhibited on the level of proTNF-alpha formation. Eur. J. Immunol. 32, 1717-1725. Boneberg, E.M., and Hartung, T. (2002b). Molecular aspects of anti-inflammatory action of G-CSF. Inflamm Res. 51, 119-128. Brown, C.Y., Lagnado, C.A., and Goodall, G.J. (1996). A cytokine mRNA-destabilizing element that is structurally and functionally distinct from A+U-rich elements Proc. Natl. Acad. Sci. 93, 13721-13725. Burgess, A.W., and Metcalf, D. (1980). The nature and action of granulocyte-macrophage colony stimulating factors. Blood 56, 947-958. Carr, R., Modi, N., and Doré, C.J. (2003). G-CSF and GM-CSF for treating or preventing neonatal infections. Cochrane Database Syst Rev. 3, CD003066 Catani, L., Gugliotta, L., Campanini, E., Mangianti, S., Gibellini, D., Baravelli, S., Vianelli, N., Lemoli, R.M., and Tura, S. (1998). Granulocyte colony-stimulating factor augments in vitro megakaryocyte colony formation by interleukin-3. Br J Haematol. 100, 207-218. Chao, N.J., Schriber, J.R., Grimes, K., Long, G.D., Negrin, R.S., Raimondi, C.M., Horning, S.J., Brown, S.L., Miller, L., and Blume, K.G. (1993). Granulocyte colony-stimulating factor 'mobilized' peripheral blood progenitor cells accelerate granulocyte and platelet recovery after high-dose chemotherapy. Blood 81, 2031-3035. Chen, C.Y., and Shyu, A.B. (1995). AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem Sci. 20, 465-470. Chen, C.Y., and Shyu, A.B. (2011). Mechanisms of deadenylation-dependent decay. Wiley Interdiscip Rev RNA 2, 167-183. Chou, Y.Y., Gao, J.I., Chang, S.F., Chang, P.Y., and Lu, S.C. (2011). Rapamycin inhibits lipopolysaccharide induction of granulocyte-colony stimulating factor and inducible nitric oxide synthase expression in macrophages by reducing the levels of octamer-binding factor-2. FEBS J 278, 85-96. Chou, Y.Y., and Lu, S.C. (2011). Inhibition by rapamycin of the lipoteichoic acid-induced granulocyte-colony stimulating factor expression in mouse macrophages. Arch Biochem Biophys 508, 110-119. Chrestensen, C.A., Schroeder, M.J., Shabanowitz, J., Hunt, D.F., Pelo, J.W., Worthington, M.T., and Sturgill, T.W. (2004). MAPKAP kinase 2 phosphorylates tristetraprolin on in vivo sites including Ser178, a site required for 14-3-3 binding. J Bio Chem 279, 10176-10184. Clark, A.R., Dean, J.L.E., and Saklatvala, J. (2003). Post-transcriptional regulation of gene expression by mitogen-activated protein kinase p38. FEBS Lett 546, 37-44. Coles, L.S., Diamond, P., Occhiodoro, F.V., M.A., and Shannon, M.F. (2000). An ordered array of cold shock domain repressor elements across tumor necrosis factor-responsive elements of the granulocyte-macrophage colony-stimulating factor promoter. J Biol Chem. 275, 14482-14493. Coulthard, L.R., White, D.E., Jones, D.L., McDermott, M.F., and Burchill, S.A. (2009). p38(MAPK): stress responses from molecular mechanisms to therapeutics. Trends Mol Med 15, 369-379. Dührsen, U., Villeval, J.L., Boyd, J., Kannourakis, G., Morstyn, G., and Metcalf, D. (1988). Effects of recombinant human granulocyte colony-stimulating factor on hematopoietic progenitor cells in cancer patients. Blood 72, 2074-2081. Demetri, G.D., and Griffin, J.D. (1991). Granulocyte colony-stimulating factor and its receptor. Blood 78, 2791-2808. Diya, Z., Lili, C., Shenglai, L., Zhiyuan, G., and Jie, Y. (2008). Lipopolysaccharide (LPS) of Porphyromonas gingivalis induces IL-1beta, TNF-alpha and IL-6 production by THP-1 cells in a way different from that of Escherichia coli LPS. Innate immun 14, 99-107. Dunn, S.M., Coles, L.S., Lang, R.K., Gerondakis, S., Vadas, M.A., and Shannon, M.F. (1994). Requirement for nuclear factor (NF)-kappa B p65 and NF-interleukin-6 binding elements in the tumor necrosis factor response region of the granulocyte colony-stimulating factor promoter. Blood 83, 2469-2479. Ernst, T.J., Ritchie, A.R., Demetri, G.D., and Griffin, J.D. (1989). Regulation of granulocyte- and monocyte-colony stimulating factor mRNA levels in human blood monocytes is mediated primarily at a post-transcriptional level. J Biol Chem. 264, 5700-5703. Eyles, J.L., Hickey, M.J., Norman, M.U., Croker, B.A., Roberts, A.W., Drake, S.F., James, W.G., Metcalf, D., Campbell, I.K., and Wicks, I.P. (2008). A key role for G-CSF-induced neutrophil production and trafficking during inflammatory arthritis. . Blood 112, 5193-5201. Fabian, M.A., Biggs, W.H., 3rd, Treiber, D.K., Atteridge, C.E., Azimioara, M.D., Benedetti, M.G., Carter, T.A., Ciceri, P., Edeen, P.T., Floyd, M., et al. (2005). A small molecule-kinase interaction map for clinical kinase inhibitors. Nat Biotechnol 23, 329-336. Fitzgerald, K.A., McWhirter, S.M., Faia, K.L., Rowe, D.C., Latz, E., Golenbock, D.T., Coyle, A.J., Liao, S.M., and Maniatis, T. (2003). IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol 4, 491-496. Flomenberg, N. (2005). The use of AMD3100 plus G-CSF for autologous hematopoietic progenitor cell mobilization is superior to G-CSF alone. Blood 106, 1867-1874. Fu, Y., O’Connor, L.M., Shepherd, T.G., and Nachtigal, M.W. (2003). The p38 MAPK inhibitor, PD169316, inhibits transforming growth factor β-induced Smad signaling in human ovarian cancer cells. Biochem Biophys Res Commun 310, 391-397. Galcheva-Gargova, Z., Dérijard, B., Wu, I.H., and Davis, R.J. (1993). An osmosensing signal transduction pathway in mammalian cells. Science 259, 760-763. Gao, J., Davidson, M.K., and Wahls, W.P. (2009). Phosphorylation-independent regulation of Atf1-promoted meiotic recombination by stress-activated, p38 kinase Spc1 of fission yeast. PLoS One. 4, e5533. Garty, B.Z., Levy, I., Nitzan, M., and Barak, Y. (1996). Sweet syndrome associated with G-CSF treatment in a child with glycogen storage disease type Ib. Pediatrics. 97, 401-403. Hale, K.K., Trollinger, D., Rihanek, M., and Manthey, C.L. (1999). Differential expression and activation of p38 mitogen-activated protein kinase alpha, beta, gamma, and delta in inflammatory cell lineages. J Immunol. 162, 4246-4252. Han, J., Lee, J.D., Bibbs, L., and Ulevitch, R.J. (1994). A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 265, 808-811. Harada, M., Qin, Y., Takano, H., Minamino, T., Zou, Y., Toko, H., Ohtsuka, M., Matsuura, K., Sano, M., Nishi, J., et al. (2005). G-CSF prevents cardiac remodeling after myocardial infarction by activating the Jak-Stat pathway in cardiomyocytes. Nat Med 11, 305-311. Hareng, L., and Hartung, T. (2002). Induction and Regulation of Endogenous Granulocyte Colony-Stimulating Factor Formation. Bio. Chem. 383, 1501-1517. Hemmi, H., Takeuchi, O., Sato, S., Yamamoto, M., Kaisho, T., Sanjo, H., Kawai, T., Hoshino, K., Takeda, K., and Akira, S. (2004). The roles of two IkappaB kinase-related kinases in lipopolysaccharide and double stranded RNA signaling and viral infection. J Exp Med 199, 1641-1650. Herlaar, E., and Brown, Z. (1999). p38 MAPK signalling cascades in inflammatory disease. Mol Med Today. 5, 439-447. Hierholzer, C., Kelly, E., Lyons, V., Roedling, E., Davies, P., Billiar, T.R., and Tweardy, D.J. (1998). G-CSF instillation into rat lungs mediates neutrophil recruitment, pulmonary edema, and hypoxia. J Leukoc Biol. 63, 169-174. Hill, C.P., Osslund, T.D., and Eisenberg, D. (1993). The structure of granulocyte-colony-stimulating factor and its relationship to other growth factors. Proc. Natl. Acad. Sci. USA 90, 5167-5171. Hirai, Y., Iyoda, M., Shibata, T., Kuno, Y., Kawaguchi, M., Hizawa, N., Matsumoto, K., Wada, Y., Kokubu, F., and Akizawa, T. (2011). IL-17A stimulates granulocyte colony-stimulating factor production via ERK1/2 but not p38 or JNK in human renal proximal tubular epithelial cells. Am J Physiol Renal Physiol. 302, 244-250. Hirokawa, M., Lee, M., Motegi, M., and Miura, A.B. (1996). Reversible renal impairment during leukocytosis induced by G-CSF in non-Hodgkin's lymphoma. Am J Hematol 51, 328-329. Kamezaki, K., Shimoda, K., Numata, A., Haro, T., Kakumitsu, H., Yoshie, M., Yamamoto, M., Takeda, K., Matsuda, T., Akira, S., et al. (2005). Roles of Stat3 and ERK in G-CSF signaling. Stem Cells 23, 252-263. Kaminska, B. (2005). MAPK signalling pathways as molecular targets for anti-inflammatory therapy--from molecular mechanisms to therapeutic benefits. Biochim Biophys Acta 1754, 253-262. Knapinska, A.M., Gratacos, F.M., Krause, C.D., Hernandez, K., Jensen, A.G., Bradley, J.J., Wu, X., Pestka, S., and Brewer, G. (2011). Chaperone Hsp27 modulates AUF1 proteolysis and AU-rich element-mediated mRNA degradation. Mol Cell Biol 31, 1419-1431. Kuczek, E.S., Shannon, M.F., Pell, L.M., and Vadas, M.A. (1991). A granulocyte-colony-stimulating factor gene promoter element responsive to inflammatory mediators is functionally distinct from an identical sequence in the granulocyte-macrophage colony-stimulating factor gene. J Immunol. 146, 2426-2433. Kumar, S., and Blake, S.M. (2005). Pharmacological potential of p38 MAPK inhibitors. Exp Pharmacol 167, 65-83. Kunkel, E.J., Plavec, I., Nguyen, D., Melrose, J., Rosler, E.S., Kao, L.T., Wang, Y., Hytopoulos, E., Bishop, A.C., Bateman, R., et al. (2004). Rapid structure-activity and selectivity analysis of kinase inhibitors by BioMAP analysis in complex human primary cell-based models. Assay Drug Dev Technol. 2, 431-441. Lahti, A., Kankaanranta, H., and Moilanen, E. (2002). P38 mitogen-activated protein kinase inhibitor SB203580 has a bi-directional effect on iNOS expression and NO production. Eur J Pharmacol. 454, 115-123. Lahti, A., Sareila, O., Kankaanranta, H., and Moilanen, E. (2006). Inhibition of p38 mitogen-activated protein kinase enhances c-Jun N-terminal kinase activity: implication in inducible nitric oxide synthase expression. BMC pharmacol 6, 5. Lasa, M., Mahtani, K.R., Finch, A., Brewer, G., Saklatvala, J., and Clark, A.R. (2000). Regulation of cyclooxygenase 2 mRNA stability by the mitogen-activated protein kinase p38 signaling cascade. Mol Cell Biol. 20, 4265-4274. Lee, J.C., and Young, P.R. (1996). Role of CSBP/p38/RK stress response kinase in LPS and cytokine signaling mechanisms. J Leukoc Biol. 59. Levesque, J.P. (2003). Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide. J Clin Invest 111, 187-196. Lim, S., Zou, Y., and Friedman, E. (2002). The transcriptional activator Mirk/Dyrk1B is sequestered by p38alpha/beta MAP kinase. J Bio Chem 277, 49438-49445. Lin, F.Y., Chen, Y.H., Lin, Y.W., Tsai, J.S., Chen, J.W., Wang, H.J., Chen, Y.L., Li, C.Y., and Lin, S.J. (2006). The role of human antigen R, an RNA-binding protein, in mediating the stabilization of toll-like receptor 4 mRNA induced by endotoxin: a novel mechanism involved in vascular inflammation. Arterioscler Thromb Vascu Biol 26, 2622-2629. Liu, H., and Kiledjian, M. (2006). Decapping the message: a beginning or an end. Biochem Soc Trans. 34, 35-38. Lu, C.Z., and Xiao, B.G. (2006). G-CSF and neuroprotection: a therapeutic perspective in cerebral ischaemia.. Biochem Soc Trans. 34, 1327-1333. Lu, Y.C., Yeh, W.C., and Ohashi, P.S. (2008). LPS/TLR4 signal transduction pathway. Cytokine 42, 145-151. Lye, E., Dhanji, S., Calzascia, T., Elford, A.R., and Ohashi, P.S. (2008). IRAK-4 kinase activity is required for IRAK-4-dependent innate and adaptive immune responses. Eur J Immunol 38, 870-876. Müller, M.M., Ruppert, S., Schaffner, W., and Matthias, P. (1988). A cloned octamer transcription factor stimulates transcription from lymphoid-specific promoters in non-B cells. Nature 336, 544-551. Manthey, C.L., Wang, S.W., Kinney, S.D., and Yao, Z. (1998). SB202190, a selective inhibitor of p38 mitogen-activated protein kinase, is a powerful regulator of LPS-induced mRNAs in monocytes. J Leukoc Biol. 64, 409-417. Meuer, K., Pitzer, C., Teismann, P., Kruger, C., Goricke, B., Laage, R., Lingor, P., Peters, K., Schlachetzki, J.C., Kobayashi, K., et al. (2006). Granulocyte-colony stimulating factor is neuroprotective in a model of Parkinson's disease. J Neurochem 97, 675-686. Minatoguchi, S., Takemura, G., Chen, X.H., Wang, N., Uno, Y., Koda, M., Arai, M., Misao, Y., Lu, C., Suzuki, K., et al. (2004). Acceleration of the healing process and myocardial regeneration may be important as a mechanism of improvement of cardiac function and remodeling by postinfarction granulocyte colony-stimulating factor treatment. Circulation 109, 2572-2580. Muniyappa, H., and Das, K.C. (2008). Activation of c-Jun N-terminal kinase (JNK) by widely used specific p38 MAPK inhibitors SB202190 and SB203580: a MLK-3-MKK7-dependent mechanism. Cell signal 20, 675-683. Nagata, S., Tsuchiya, M., Asano, S., Kaziro, Y., Yamazaki, T., Yamamota, O., Hirata, Y., Kubota, N., Oheda, M., and Nomura, H. (1986). Molecular cloning and expression of cDNA for human granulocyte colony-stimulating factor. Nature 319, 415-418. Nicola, N.A., Metcalf, D., Matsumoto, M., and Johnson, G.R. (1983). Purification of a Factor Inducing Differentiation in Murine Myelomonocytic Leukemia Cell. J Biol Chem. 258, 9017-9023. Nishizawa, M., and Nagata, S. (1990). Regulatory elements responsible for inducible expression of the granulocyte colony-stimulating factor gene in macrophages. Mol Cell Biol. 10, 2002-2011. Oiso, N., Watanabe, K., and Kawada, A. (2006). Granulocyte colony-stimulating factor-induced Sweet syndrome in a healthy donor. Br J Hematol 135, 148. Pargellis, C., Tong, L., Churchill, L., Cirillo, P.F., Gilmore, T., Graham, A.G., Grob, P.M., Hickey, E.R., Moss, N., Pav, S., et al. (2002). Inhibition of p38 MAP kinase by utilizing a novel allosteric binding site. Nat Sruct Biol 9, 268-272. Paschoud, S., Dogar, A.M., Kuntz, C., Grisoni-Neupert, B., Richman, L., and Kuhn, L.C. (2006). Destabilization of interleukin-6 mRNA requires a putative RNA stem-loop structure, an AU-rich element, and the RNA-binding protein AUF1. Mol Cell Biol 26, 8228-8241. Patil, C., Zhu, X., Rossa, C.J., , , Kim, Y.J., and Kirkwood, K.L. (2004). p38 MAPK regulates IL-1beta induced IL-6 expression through mRNA stability in osteoblasts. Immunol Invest. 32, 123-233. Petit, I., Szyper-Kravitz, M., Nagler, A., Lahav, M., Peled, A., Habler, L., Ponomaryov, T., Taichman, R.S., Arenzana-Seisdedos, F., Fujii, N., et al. (2002). G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol 3, 687-694. Pimienta, G., and Pascual, J. (2007). Canonical and Alternative MAPK Signaling. Cell Cycle. 6, 2628-2632. Pontoglio, M., Prié, D., Cheret, C., Doyen, A., Leroy, C., Froguel, P., Velho, G., Yaniv, M., and Friedlander, G. (2000). HNF1alpha controls renal glucose reabsorption in mouse and man. EMBO Rep. 1, 359-365. Price, T.H., Chatta, G.S., and Dale, D.C. (1996). Effect of recombinant granulocyte colony-stimulating factor on neutrophil kinetics in normal young and elderly humans. Blood 88, 335-340. Putland, R.A., Sassinis, T.A., Harvey, J.S., Diamond, P., Coles, L.S., Brown, C.Y., and Goodall, G.J. (2002). RNA Destabilization by the Granulocyte Colony-Stimulating Factor Stem-Loop Destabilizing Element Involves a Single Stem-Loop That Promotes Deadenylation. Mol Cell Biol 22, 1664-1673. Rutella, S., Zavala, F., Danese, S., Kared, H., and Leone, G. (2005). Granulocyte colony-stimulating factor: a novel mediator of T cell tolerance. J Immunol. 175, 7085-7091. Saklatvala, J. (2004). The p38 MAP kinase pathway as a therapeutic target in inflammatory disease. Curr Opin Pharmacol 4, 372-377. Schabitz, W.R., Kollmar, R., Schwaninger, M., Juettler, E., Bardutzky, J., Scholzke, M.N., Sommer, C., and Schwab, S. (2003). Neuroprotective effect of granulocyte colony-stimulating factor after focal cerebral ischemia. Stroke 34, 745-751. Schneider, A., Kruger, C., Steigleder, T., Weber, D., Pitzer, C., Laage, R., Aronowski, J., Maurer, M.H., Gassler, N., Mier, W., et al. (2005). The hematopoietic factor G-CSF is a neuronal ligand that counteracts programmed cell death and drives neurogenesis. J Clin Invest 115, 2083-2098. Shannon, M.F., Pell, L.M., Lenardo, M.J., Kuczek, E.S., Occhiodoro, F.S., Dunn, S.M., and Vadas, M.A. (1990). A novel tumor necrosis factor-responsive transcription factor which recognizes a regulatory element in hemopoietic growth factor genes. Mol Cell Biol. 10, 2950-2959. Shanware, N.P., Williams, L.M., Bowler, M.J., and Tibbetts, R.S. (2009). Non-specific in vivo inhibition of CK1 by the pyridinyl imidazole p38 inhibitors SB 203580 and SB 202190. BMB Rep. 42, 142-147. Shimazu, R., Akashi, S., Ogata, H., Nagai, Y., Fukudome, K., Miyake, K., and Kimoto, M. (1999). MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med. 189, 1777-1782. Souza, L.M., Boone, T.C., Gabrilove, J., Lai, P.H., Zsebo, K.M., Murdock, D.C., Chazin, V.R., Bruszewski, J., Lu, H., Chen, K.K., et al. (1986). Recombinant human granulocyte colony-stimulating factor: effects on normal and leukemic myeloid cells. Science 323, 61-65. Stroncek, D.F., Clay, M.E., Herr, G., Smith, J., Jaszcz, W.B., Ilstrup, S., and McCullough, J. (1997). The kinetics of G-CSF mobilization of CD34+ cells in healthy people. Transfus Med. 7, 19-24. Su, J., Cui, X., Li, Y., Mani, H., Ferreyra, G.A., Danner, R.L., Hsu, L.L., Fitz, Y., and Eichacker, P.Q. (2010). SB203580, a p38 inhibitor, improved cardiac function but worsened lung injury and survival during Escherichia coli pneumonia in mice. J Trauma 68, 1317-1327. ten Hove, T., van den Blink, B., Pronk, I., Drillenburg, P., Peppelenbosch, M.P., and van Deventer, S.J. (2002). Dichotomal role of inhibition of p38 MAPK with SB 203580 in experimental colitis. Gut 50, 507-512. Thorn, J. (2001). The inflammatory response in humans after inhalation of bacterial endotoxin: a review. Inflamm Res. 50, 254-261. Tsai, K.J., Tsai, Y.C., and Shen, C.K. (2007). G-CSF rescues the memory impairment of animal models of Alzheimer's disease. J Exp Med 204, 1273-1280. Tsuchiya, M., Asano, S., Kaziro, Y., and Nagata, S. (1986). and characterization of the cDNA for murine granulocyte colony-stimulating factor. Proc. Natl. Acad. Sci. 83, 7633-7637. Tsuchiya, M., Kaziro, Y., and Nagata, S. (1987). The chromosomal gene structure for murine granulocyte colony-stimulating factor. Eur. J. Biochem. 165, 7-12. Tsukada, J., Saito, K., Waterman, W.R., Webb, A.C., and Auron, P.E. (1994). Transcription factors NF-IL6 and CREB recognize a common essential site in the human prointerleukin 1 beta gene. Mol Cell Biol. 14, 7285-7297. Underwood, D.C., Osborn, R.R., Kotzer, C.J., Adams, J.L., Lee, J.C., Webb, E.F., Carpenter, D.C., Bochnowicz, S., Thomas, H.C., Hay, D.W., et al. (2000). SB 239063, a potent p38 MAP kinase inhibitor, reduces inflammatory cytokine production, airways eosinophil infiltration, and persistence. J Pharmacol Exp Ther. 293, 281-288. Valerius, T., Repp, R., de Wit, T.P., Berthold, S., Platzer, E., Kalden, J.R., Gramatzki, M., and van de Winkel, J.G. (1993). Involvement of the high-affinity receptor for IgG (Fc gamma RI; CD64) in enhanced tumor cell cytotoxicity of neutrophils during granulocyte colony-stimulating factor therapy. Blood 8, 931-939. van Raam, B.J., Drewniak, A., Groenewold, V., van den Berg, T.K., and Kuijpers, T.W. (2008). Granulocyte colony-stimulating factor delays neutrophil apoptosis by inhibition of calpains upstream of caspase-3. Blood 112, 2046-2054. Waas, W.F., Lo, H.H., and Dalby, K.N. (2001). The kinetic mechanism of the dual phosphorylation of the ATF2 transcription factor by p38 mitogen-activated protein (MAP) kinase alpha. Implications for signal/response profiles of MAP kinase pathways. J Biol Chem 276, 5676-5684. Wang, X.S., Diener, K., Manthey, C.L., Wang, S., Rosenzweig, B., Bray, J., Delaney, J., Cole, C.N., Chan-Hui, P.Y., Mantlo, N., et al. (1997). Molecular cloning and characterization of a novel p38 mitogen-activated protein kinase. J Biol Chem. 272, 23668-23674. Yamagami, S. (2004). Effects of TGF- 2 on Immune Response-Related Gene Expression Profiles in the Human Corneal Endothelium. Invest Ophthalmo Vis Sci 45, 515-521. Yao, J., Mackman, N., Edgington, T.S., and Fan, S.T. (1997). Lipopolysaccharide induction of the tumor necrosis factor-alpha promoter in human monocytic cells. Regulation by Egr-1, c-Jun, and NF-kappaB transcription factors. J Biol Chem. 272, 17795-17801. Young, L.E., Moore, A.E., Sokol, L., Meisner-Kober, N., and Dixon, D.A. (2012). The mRNA stability factor HuR inhibits microRNA-16 targeting of COX-2. Mol Cancer Res 10, 167-180. Zhang, J., Shen, B., and Lin, A. (2007). Novel strategies for inhibition of the p38 MAPK pathway. Trend Pharmacol Sci 28, 286-295. Zhang, L., Yang, M., Wang, Q., Liu, M., Liang, Q., Zhang, H., and Xiao, X. (2011). HSF1 regulates expression of G-CSF through the binding element for NF-IL6/CCAAT enhancer binding protein beta. Mol Cell Biochem 352, 11-17. Zohlnhöfer, D., Ott, I., Mehilli, J., Schömig, K., Michalk, F., Ibrahim, T., Meisetschläger, G., von Wedel, J., Bollwein, H., Seyfarth, M., et al. (2006). Stem Cell Mobilization by Granulocyte Colony-Stimulating Factor in Patients With Acute Myocardial InfarctionA Randomized Controlled Trial. JAMA. 295, 1003-1010. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6702 | - |
| dc.description.abstract | 顆粒性白血球群落刺激因子(G-CSF)為造血性醣蛋白家族中的一員,也是一種細胞激素,主要由巨噬細胞及單核球細胞所分泌,具有促進噬中性白血球分化、增生及移動的功能。細胞受到LPS刺激活化p38 MAPK會使G-CSF mRNA穩定度增加,增加G-CSF表現。G-CSF mRNA的穩定度主要由 3'UTR的ARE及SLDE所調控。許多研究顯示給予SB203580抑制p38 MAPK活性後,會使在3’UTR帶有ARE的mRNA半衰期變短,進而降低其表現量。但是本實驗室先前的研究結果發現,以小鼠巨噬細胞Raw264.7經LPS刺激之下預先給予SB203580,會增加G-CSF mRNA的穩定度,更增加LPS誘導的G-CSF mRNA及蛋白質的表現量,顯示SB203580對G-CSF表現的影響與對其他帶有ARE的細胞激素的mRNA作用是不同的。本研究的目的是探討SLDE在SB203580增
加LPS誘導的G-CSF mRNA穩定度所扮演的角色。 實驗結果發現當細胞不受刺激時G-CSF 3’UTR會使mRNA不穩定;而給予LPS及SB203580後會提高mRNA穩定度。將3’UTR接到luciferase後,以site direct mutagenesis分析發現SB203580提高LPS誘導的G-CSF mRNA穩定度是透過3’UTR SLDE內TTTAATATTTA這段高保留性序列。此外,不同的p38 MAPKs抑制劑對G-CSF mRNA及蛋白質的量有不同的影響,其中預先給予SB203580、SB202190及PD169316都會提高G-CSF mRNA穩定度進而提高LPS誘導的mRNA及蛋白質表現,而SKF86002及SB239063則不會影響G-CSF蛋白質表現,但是SKF86002也會些微增加約1.8倍的mRNA表現。最後我們也發現在沒有LPS刺激的情況下,SB203580、SB202190及PD169316也會透G-CSF 3’UTR來增加G-CSF mRNA穩定度,顯示這些抑制劑增加G-CSF mRNA穩定度可能不是藉由抑制p38 MAPKs磷酸酶活性所導致。綜合以上結果,SB203580會透過SLDE中高保留性的序列提高G-CSF mRNA穩定度,而且SB203580增加G-CSF mRNA的作用可能不是藉由抑制p38 MAPKs磷酸酶活性所導致。 | zh_TW |
| dc.description.abstract | Granulocyte colony stimulating factor (G-CSF) is not only a member of hematopoietic growth factor but also a cytokine. G-CSF is known to control the production, differentiation and migration of neutrophils. LPS increasing G-CSF mRNA stability by activating p38 MAPK kinase activity, thus increases G-CSF production. There are two destabilizing elements in G-CSF 3’UTR-adenosine uridine-rich element (ARE) and stem-loop destabilizing element (SLDE) that regulate G-CSF mRNA stability. Numerous studies show that SB203580, a pyridinyl imidazole p38 MAPK inhibitors, reduces the half-life of the ARE-containing mRNA by inhibiting p38 MAPK kinase activity. However, our previous studies showed that SB203580 enhances LPS-induced G-CSF production by increasing mRNA stability. The aim of this study is to investigate the possible role of SLDE in SB203580 mediated increase in G-CSF mRNA stability in LPS treated macrophage.
Our results show that G-CSF 3’UTR decreases mRNA stability in unstimulated cells, but stabilized mRNA when p38 MAPKs activity was activated by LPS. We find that the consensus sequence “TTTAATATTTA” rather than the stem-loop structure in G-CSF 3’UTR SLDE is essential for the SB230580 enhanced LPS-increased G-CSF mRNA stability. Moreover, various p38 MAPK inhibitors had different effects on the expression levels of G-CSF mRNA and protein. The levels of LPS-induced G-CSF mRNA and protein in Raw 264.7 were increased by SB203580, SB202190 and PD169316, but not by SB239063. Furthermore, we discovered that SB203580, SB202190 and PD169316 increased G-CSF mRNA stability when p38 MAPK kinase activity was inactivated. Taken together, these results suggest that SB203580 increases G-CSF mRNA stability through the highly conserved sequence and this effect is independent p38 MAPKs kinase inhibition. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-17T09:16:34Z (GMT). No. of bitstreams: 1 ntu-101-R99442011-1.pdf: 3509540 bytes, checksum: 0bf8dd944970c305ec485d0e2952b389 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 口試委員審定書........................................ i
謝誌.................................................. ii 摘要.................................................. viii 第一章 緒論........................................... 1 第一節 文獻回顧....................................... 2 第二節 研究動機及目的................................. 16 第二章 材料方法....................................... 17 實驗材料.............................................. 18 第二節 細胞培養....................................... 19 第三節 細胞毒殺活性測試之檢測......................... 20 第四節 細胞內RNA抽取與基因表現量分析 ..................21 第五節 蛋白質表現量分析............................... 24 第六節 質體的建構. .....................................28 第七節 螢火蟲冷光酶活性分析 (luciferase activity assay)................................................ 34 第八節 資料統計分析................................... 36 第三章 實驗結果....................................... 37 第一節 探討SB203580增加LPS誘導的G-CSF mRNA穩定度是否是透過 G-CSF mRNA 3’UTR..................................... 38 第二節 探討SB203580增加LPS誘導的G-CSF mRNA穩定度是透過G-CSFmRNA 3’UTR當中哪一段序列.......................... 39 第三節 探討不同p38 MAPK抑制劑對LPS誘導的G-CSF mRNA表現的影響................................................... 41 第四節 探討只單獨處理SB203580是否就會增加G-CSF mRNA表現................................................... 43 第四章 討論.......................................... 45 第一節SB203580透過G-CSF mRNA 3'UTR SLDE來增加LPS誘導的G-CSF mRNA穩定度........................................... 46 第二節 LPS除了透過ARE之外也會透過SLDE增加G-CSF mRNA穩定度................................................... 47 第三節 不同p38MAPKs抑制劑對LPS誘導的G-CSF mRNA表現有不同影響................................................... 48 第四節 單獨處理SB203580、SB202190和PD169316增加G-CSF mRNA穩定度不是藉由抑制p38 MAPKs磷酸酶活性所導致............ 50 第五節 結論.......................................... 52 第五章 圖表.......................................... 53 參考文獻............................................. 70 附錄................................................. 85 | |
| dc.language.iso | zh-TW | |
| dc.title | 位於G-CSF 3'端UTR之SLDE序列在SB203580誘導下增加G-CSF mTNA穩定度的角色 | zh_TW |
| dc.title | Role of SLDE in G-CSF 3'UTR mediates increase of mRNA stability induced by SB203580 | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張淑芬,繆希椿,余明俊 | |
| dc.subject.keyword | 顆粒性白血球刺激因子,SB203580,stem-loop destabilizing element (SLDE),mRNA穩定度,p38 MAPK, | zh_TW |
| dc.subject.keyword | G-CSF,SB203580,SLDE,mRNA stability,p38 MAPK, | en |
| dc.relation.page | 95 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2012-08-01 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
| 顯示於系所單位: | 生物化學暨分子生物學科研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf | 3.43 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
