Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 微生物學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67028
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳小梨(Show-Li Chen)
dc.contributor.authorI-Hsin Chenen
dc.contributor.author陳亦欣zh_TW
dc.date.accessioned2021-06-17T01:17:43Z-
dc.date.available2022-08-30
dc.date.copyright2020-09-02
dc.date.issued2020
dc.date.submitted2020-08-16
dc.identifier.citationAl-Bassam, W., Kubicki, M., Bailey, M., Walker, L., Young, P., Pilcher, D.V., and Bellomo, R. (2018). Characteristics, incidence, and outcome of patients admitted to the intensive care unit with myasthenia gravis. J Crit Care 45, 90-94.
Albuquerque, E.X., Pereira, E.F., Alkondon, M., and Rogers, S.W. (2009). Mammalian nicotinic acetylcholine receptors: from structure to function. Physiological reviews 89, 73-120.
Andersen, J.B., Gilhus, N.E., and Sanders, D.B. (2016). Factors affecting outcome in myasthenia gravis. Muscle Nerve 54, 1041-1049.
Andersen, J.B., Heldal, A.T., Engeland, A., and Gilhus, N.E. (2014). Myasthenia gravis epidemiology in a national cohort; combining multiple disease registries. Acta Neurol Scand Suppl, 26-31.
Birks, R., Katz, B., and Miledi, R. (1960). Physiological and structural changes at the amphibian myoneural junction, in the course of nerve degeneration. J Physiol 150, 145-168.
Borges, L.S., Yechikhov, S., Lee, Y.I., Rudell, J.B., Friese, M.B., Burden, S.J., and Ferns, M.J. (2008). Identification of a motif in the acetylcholine receptor beta subunit whose phosphorylation regulates rapsyn association and postsynaptic receptor localization. J Neurosci 28, 11468-11476.
Burden, S.J., Huijbers, M.G., and Remedio, L. (2018). Fundamental molecules and mechanisms for forming and maintaining neuromuscular synapses. International journal of molecular sciences 19, 490.
Burden, S.J., Yumoto, N., and Zhang, W. (2013). The role of MuSK in synapse formation and neuromuscular disease. Cold Spring Harb Perspect Biol 5, a009167.
Burgess, R.W., Nguyen, Q.T., Son, Y.-J., Lichtman, J.W., and Sanes, J.R. (1999). Alternatively Spliced Isoforms of Nerve- and Muscle-Derived Agrin: Their Roles at the Neuromuscular Junction. Neuron 23, 33-44.
Calabria, E., Ciciliot, S., Moretti, I., Garcia, M., Picard, A., Dyar, K.A., Pallafacchina, G., Tothova, J., Schiaffino, S., and Murgia, M. (2009). NFAT isoforms control activity-dependent muscle fiber type specification. Proceedings of the National Academy of Sciences 106, 13335.
Carr, A.S., Cardwell, C.R., McCarron, P.O., and McConville, J. (2010). A systematic review of population based epidemiological studies in Myasthenia Gravis. BMC Neurol 10, 46.
Cartaud, A., Strochlic, L., Guerra, M., Blanchard, B., Lambergeon, M., Krejci, E., Cartaud, J., and Legay, C. (2004). MuSK is required for anchoring acetylcholinesterase at the neuromuscular junction. J Cell Biol 165, 505-515.
Chang, S.W., Lu, P.Y., Guo, J.H., Tsai, T.C., Tsao, Y.P., and Chen, S.L. (2012). NRIP enhances HPV gene expression via interaction with either GR or E2. Virology 423, 38-48.
Chang, S.W., Tsao, Y.P., Lin, C.Y., and Chen, S.L. (2011). NRIP, a novel calmodulin binding protein, activates calcineurin to dephosphorylate human papillomavirus E2 protein. J Virol 85, 6750-6763.
Changeux, J.P., Devillers-Thiery, A., and Chemouilli, P. (1984). Acetylcholine receptor: an allosteric protein. Science 225, 1335.
Chen, H.-H., Fan, P., Chang, S.-W., Tsao, Y.-P., Huang, H.-P., and Chen, S.-L. (2017). NRIP/DCAF6 stabilizes the androgen receptor protein by displacing DDB2 from the CUL4A-DDB1 E3 ligase complex in prostate cancer. Oncotarget 8, 21501.
Chen, H.H., Chen, W.P., Yan, W.L., Huang, Y.C., Chang, S.W., Fu, W.M., Su, M.J., Yu, I.S., Tsai, T.C., Yan, Y.T., et al. (2015). NRIP is newly identified as a Z-disc protein, activating calmodulin signaling for skeletal muscle contraction and regeneration. J Cell Sci 128, 4196-4209.
Chen, H.H., Tsai, L.K., Liao, K.Y., Wu, T.C., Huang, Y.H., Huang, Y.C., Chang, S.W., Wang, P.Y., Tsao, Y.P., and Chen, S.L. (2018). Muscle-restricted nuclear receptor interaction protein knockout causes motor neuron degeneration through down-regulation of myogenin at the neuromuscular junction. J Cachexia Sarcopenia Muscle 9, 771-785.
Chen, P.H., Tsao, Y.P., Wang, C.C., and Chen, S.L. (2008). Nuclear receptor interaction protein, a coactivator of androgen receptors (AR), is regulated by AR and Sp1 to feed forward and activate its own gene expression through AR protein stability. Nucleic Acids Res 36, 51-66.
Cheung, C.-L., Chan, B.Y., Chan, V., Ikegawa, S., Kou, I., Ngai, H., Smith, D., Luk, K.D., Huang, Q.-Y., and Mori, S. (2009). Pre-B-cell leukemia homeobox 1 (PBX1) shows functional and possible genetic association with bone mineral density variation. Human molecular genetics 18, 679-687.
Chin, E.R., Olson, E.N., Richardson, J.A., Yang, Q., Humphries, C., Shelton, J.M., Wu, H., Zhu, W., Bassel-Duby, R., and Williams, R.S. (1998). A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type. Genes Development 12, 2499-2509.
Chou, H.-J., Lai, D.-M., Huang, C.-W., McLennan, I.S., Wang, H.-D., and Wang, P.-Y. (2013). BMP4 is a peripherally-derived factor for motor neurons and attenuates glutamate-induced excitotoxicity in vitro. PloS one 8.
DeChiara, T.M., Bowen, D.C., Valenzuela, D.M., Simmons, M.V., Poueymirou, W.T., Thomas, S., Kinetz, E., Compton, D.L., Rojas, E., Park, J.S., et al. (1996). The Receptor Tyrosine Kinase MuSK Is Required for Neuromuscular Junction Formation In Vivo. Cell 85, 501-512.
Demonbreun, A.R., Lapidos, K.A., Heretis, K., Levin, S., Dale, R., Pytel, P., Svensson, E.C., and McNally, E.M. (2010). Myoferlin regulation by NFAT in muscle injury, regeneration and repair. Journal of Cell Science 123, 2413.
Dobbins, G.C., Luo, S., Yang, Z., Xiong, W.C., and Mei, L. (2008). alpha-Actinin interacts with rapsyn in agrin-stimulated AChR clustering. Mol Brain 1, 18.
Ehret, G.B., O'connor, A.A., Weder, A., Cooper, R.S., and Chakravarti, A. (2009). Follow-up of a major linkage peak on chromosome 1 reveals suggestive QTLs associated with essential hypertension: GenNet study. european Journal of Human genetics 17, 1650-1657.
Engel, A.G. (2008). Chapter 3 The neuromuscular junction. In Handbook of Clinical Neurology (Elsevier), pp. 103-148.
Funakoshi, H., Belluardo, N., Arenas, E., Yamamoto, Y., Casabona, A., Persson, H., and Ibanez, C.F. (1995). Muscle-derived neurotrophin-4 as an activity-dependent trophic signal for adult motor neurons. Science 268, 1495-1499.
Gautam, M., Noakes, P.G., Moscoso, L., Rupp, F., Scheller, R.H., Merlie, J.P., and Sanes, J.R. (1996). Defective Neuromuscular Synaptogenesis in Agrin-Deficient Mutant Mice. Cell 85, 525-535.
Gautel, M., Lakey, A., Barlow, D.P., Holmes, Z., Scales, S., Leonard, K., Labeit, S., Mygland, A., Gilhus, N.E., and Aarli, J.A. (1993). Titin antibodies in myasthenia gravis: identification of a major immunogenic region of titin. Neurology 43, 1581-1585.
Gilhus, N.E. (2016). Myasthenia Gravis. New England Journal of Medicine 375, 2570-2581.
Gilhus, N.E., Nacu, A., Andersen, J.B., and Owe, J.F. (2015). Myasthenia gravis and risks for comorbidity. European Journal of Neurology 22, 17-23.
Gilhus, N.E., Skeie, G.O., Romi, F., Lazaridis, K., Zisimopoulou, P., and Tzartos, S. (2016). Myasthenia gravis - autoantibody characteristics and their implications for therapy. Nat Rev Neurol 12, 259-268.
Gilhus, N.E., Tzartos, S., Evoli, A., Palace, J., Burns, T.M., and Verschuuren, J. (2019). Myasthenia gravis. Nat Rev Dis Primers 5, 30.
Gilhus, N.E., and Verschuuren, J.J. (2015). Myasthenia gravis: subgroup classification and therapeutic strategies. The Lancet Neurology 14, 1023-1036.
Giraud, M., Taubert, R., Vandiedonck, C., Ke, X., Lévi-Strauss, M., Pagani, F., Baralle, F.E., Eymard, B., Tranchant, C., Gajdos, P., et al. (2007). An IRF8-binding promoter variant and AIRE control CHRNA1 promiscuous expression in thymus. Nature 448, 934-937.
Green, W.N., and Claudio, T. (1993). Acetylcholine receptor assembly: subunit folding and oligomerization occur sequentially. Cell 74, 57-69.
Hall, Z.W., and Sanes, J.R. (1993). Synaptic structure and development: The neuromuscular junction. Cell 72, 99-121.
Hallock, P.T., Xu, C.F., Park, T.J., Neubert, T.A., Curran, T., and Burden, S.J. (2010). Dok-7 regulates neuromuscular synapse formation by recruiting Crk and Crk-L. Genes Dev 24, 2451-2461.
Hamuro, J., Higuchi, O., Okada, K., Ueno, M., Iemura, S., Natsume, T., Spearman, H., Beeson, D., and Yamanashi, Y. (2008). Mutations causing DOK7 congenital myasthenia ablate functional motifs in Dok-7. J Biol Chem 283, 5518-5524.
Han, C.P., Lee, M.Y., Tzeng, S.L., Yao, C.C., Wang, P.H., Cheng, Y.W., Chen, S.L., Wu, T.S., Tyan, Y.S., and Kok, L.F. (2008). Nuclear Receptor Interaction Protein (NRIP) expression assay using human tissue microarray and immunohistochemistry technology confirming nuclear localization. J Exp Clin Cancer Res 27, 25.
Hara, H., Hayashi, K., Ohta, K., Itoh, N., Nishitani, H., and Ohta, M. (1993). Detection and characterization of blocking-type anti-acetylcholine receptor antibodies in sera from patients with myasthenia gravis. Clin Chem 39, 2053-2057.
Harridge, S.D.R. (2007). Plasticity of human skeletal muscle: gene expression to in vivo function. Experimental Physiology 92, 783-797.
Hoch, W., McConville, J., Helms, S., Newsom-Davis, J., Melms, A., and Vincent, A. (2001). Auto-antibodies to the receptor tyrosine kinase MuSK in patients with myasthenia gravis without acetylcholine receptor antibodies. Nature medicine 7, 365-368.
Hong, Y., Li, H.F., Romi, F., Skeie, G.O., and Gilhus, N.E. (2018). HLA and MuSK-positive myasthenia gravis: A systemic review and meta-analysis. Acta Neurol Scand 138, 219-226.
Hong, Y., Zisimopoulou, P., Trakas, N., Karagiorgou, K., Stergiou, C., Skeie, G.O., Hao, H.J., Gao, X., Owe, J.F., Zhang, X., et al. (2017). Multiple antibody detection in 'seronegative' myasthenia gravis patients. Eur J Neurol 24, 844-850.
Huijbers, M.G., Vink, A.F., Niks, E.H., Westhuis, R.H., van Zwet, E.W., de Meel, R.H., Rojas-García, R., Díaz-Manera, J., Kuks, J.B., Klooster, R., et al. (2016). Longitudinal epitope mapping in MuSK myasthenia gravis: implications for disease severity. J Neuroimmunol 291, 82-88.
Huijbers, M.G., Zhang, W., Klooster, R., Niks, E.H., Friese, M.B., Straasheijm, K.R., Thijssen, P.E., Vrolijk, H., Plomp, J.J., Vogels, P., et al. (2013). MuSK IgG4 autoantibodies cause myasthenia gravis by inhibiting binding between MuSK and Lrp4. Proc Natl Acad Sci U S A 110, 20783-20788.
Jaretzki, A., 3rd, Barohn, R.J., Ernstoff, R.M., Kaminski, H.J., Keesey, J.C., Penn, A.S., and Sanders, D.B. (2000). Myasthenia gravis: recommendations for clinical research standards. Task Force of the Medical Scientific Advisory Board of the Myasthenia Gravis Foundation of America. Neurology 55, 16-23.
Kablar, B., and Belliveau, A.C. (2005). Presence of neurotrophic factors in skeletal muscle correlates with survival of spinal cord motor neurons. Developmental dynamics 234, 659-669.
Kelley, L.A., Mezulis, S., Yates, C.M., Wass, M.N., and Sternberg, M.J.E. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols 10, 845-858.
Kelly, A., and Zacks, S. (1969). The fine structure of motor endplate morphogenesis. The Journal of Cell Biology 42, 154-169.
Kerty, E., Elsais, A., Argov, Z., Evoli, A., and Gilhus, N.E. (2014). EFNS/ENS Guidelines for the treatment of ocular myasthenia. Eur J Neurol 21, 687-693.
Kim, N., Stiegler, A.L., Cameron, T.O., Hallock, P.T., Gomez, A.M., Huang, J.H., Hubbard, S.R., Dustin, M.L., and Burden, S.J. (2008). Lrp4 Is a Receptor for Agrin and Forms a Complex with MuSK. Cell 135, 334-342.
Koneczny, I., Stevens, J.A., De Rosa, A., Huda, S., Huijbers, M.G., Saxena, A., Maestri, M., Lazaridis, K., Zisimopoulou, P., Tzartos, S., et al. (2017). IgG4 autoantibodies against muscle-specific kinase undergo Fab-arm exchange in myasthenia gravis patients. J Autoimmun 77, 104-115.
Kordas, G., Lagoumintzis, G., Sideris, S., Poulas, K., and Tzartos, S.J. (2014). Direct Proof of the In Vivo Pathogenic Role of the AChR Autoantibodies from Myasthenia Gravis Patients. PLOS ONE 9, e108327.
Lanner, J.T., Georgiou, D.K., Joshi, A.D., and Hamilton, S.L. (2010). Ryanodine Receptors: Structure, Expression, Molecular Details, and Function in Calcium Release. Cold Spring Harbor Perspectives in Biology 2.
Lee, Y., Rudell, J., and Ferns, M. (2009). Rapsyn interacts with the muscle acetylcholine receptor via alpha-helical domains in the alpha, beta, and epsilon subunit intracellular loops. Neuroscience 163, 222-232.
Li, F., Yuan, W., and Wu, X. (2018). Association of CTLA-4 polymorphisms with increased risks of myasthenia gravis. Ann Hum Genet 82, 358-369.
Li, L., Cao, Y., Wu, H., Ye, X., Zhu, Z., Xing, G., Shen, C., Barik, A., Zhang, B., Xie, X., et al. (2016). Enzymatic Activity of the Scaffold Protein Rapsyn for Synapse Formation. Neuron 92, 1007-1019.
Luo, J., Taylor, P., Losen, M., de Baets, M.H., Shelton, G.D., and Lindstrom, J. (2009). Main immunogenic region structure promotes binding of conformation-dependent myasthenia gravis autoantibodies, nicotinic acetylcholine receptor conformation maturation, and agonist sensitivity. J Neurosci 29, 13898-13908.
Magill-Solc, C., and McMahan, U.J. (1988). Motor neurons contain agrin-like molecules. J Cell Biol 107, 1825-1833.
Marchand, S., Devillers-Thiéry, A., Pons, S., Changeux, J.P., and Cartaud, J. (2002). Rapsyn escorts the nicotinic acetylcholine receptor along the exocytic pathway via association with lipid rafts. J Neurosci 22, 8891-8901.
Marx, A., Pfister, F., Schalke, B., Saruhan-Direskeneli, G., Melms, A., and Ströbel, P. (2013). The different roles of the thymus in the pathogenesis of the various myasthenia gravis subtypes. Autoimmun Rev 12, 875-884.
Masiakowski, P., and Yancopoulos, G.D. (1998). The Wnt receptor CRD domain is also found in MuSK and related orphan receptor tyrosine kinases. Current Biology 8, R407.
Mazzoli, M., Ariatti, A., Valzania, F., Kaleci, S., Tondelli, M., Nichelli, P.F., and Galassi, G. (2018). Factors affecting outcome in ocular myasthenia gravis. Int J Neurosci 128, 15-24.
McKinsey, T.A., Zhang, C.L., and Olson, E.N. (2000). Activation of the myocyte enhancer factor-2 transcription factor by calcium/calmodulin-dependent protein kinase-stimulated binding of 14-3-3 to histone deacetylase 5. Proceedings of the National Academy of Sciences 97, 14400.
Mills, M., Yang, N., Weinberger, R., Vander Woude, D.L., Beggs, A.H., Easteal, S., and North, K. (2001). Differential expression of the actin-binding proteins, alpha-actinin-2 and -3, in different species: implications for the evolution of functional redundancy. Hum Mol Genet 10, 1335-1346.
Moradi, F., Copeland, E.N., Baranowski, R.W., Scholey, A.E., Stuart, J.A., and Fajardo, V.A. (2020). Calmodulin-Binding Proteins in Muscle: A Minireview on Nuclear Receptor Interacting Protein, Neurogranin, and Growth-Associated Protein 43. Int J Mol Sci 21.
Noridomi, K., Watanabe, G., Hansen, M.N., Han, G.W., and Chen, L. (2017). Structural insights into the molecular mechanisms of myasthenia gravis and their therapeutic implications. Elife 6.
Ohkawara, B., Cabrera-Serrano, M., Nakata, T., Milone, M., Asai, N., Ito, K., Ito, M., Masuda, A., Ito, Y., Engel, A.G., et al. (2014). LRP4 third β-propeller domain mutations cause novel congenital myasthenia by compromising agrin-mediated MuSK signaling in a position-specific manner. Hum Mol Genet 23, 1856-1868.
Okada, K., Inoue, A., Okada, M., Murata, Y., Kakuta, S., Jigami, T., Kubo, S., Shiraishi, H., Eguchi, K., Motomura, M., et al. (2006). The Muscle Protein Dok-7 Is Essential for Neuromuscular Synaptogenesis. Science 312, 1802.
Oosterhuis, H.J., Limburg, P.C., Hummel-Tappel, E., and The, T.H. (1983). Anti-acetylcholine receptor antibodies in myasthenia gravis. Part 2. Clinical and serological follow-up of individual patients. J Neurol Sci 58, 371-385.
Park, K.H., Franciosi, S., and Leavitt, B.R. (2013). Postnatal muscle modification by myogenic factors modulates neuropathology and survival in an ALS mouse model. Nature communications 4, 1-12.
Powers, K., Joumaa, V., Jinha, A., Moo, E.K., Smith, I.C., Nishikawa, K., and Herzog, W. (2017). Titin force enhancement following active stretch of skinned skeletal muscle fibres. The Journal of Experimental Biology 220, 3110.
Powers, K., Schappacher-Tilp, G., Jinha, A., Leonard, T., Nishikawa, K., and Herzog, W. (2014). Titin force is enhanced in actively stretched skeletal muscle. The Journal of Experimental Biology 217, 3629.
Prior, T.W., Leach, M.E., and Finanger, E. (1993). Spinal Muscular Atrophy. In GeneReviews(®), M.P. Adam, H.H. Ardinger, R.A. Pagon, S.E. Wallace, L.J.H. Bean, K. Stephens, and A. Amemiya, eds. (Seattle (WA): University of Washington, Seattle Copyright © 1993-2020, University of Washington, Seattle. GeneReviews is a registered trademark of the University of Washington, Seattle. All rights reserved.).
Raftery, M.A., Hunkapiller, M.W., Strader, C.D., and Hood, L.E. (1980). Acetylcholine receptor: complex of homologous subunits. Science 208, 1454.
Romi, F., Hong, Y., and Gilhus, N.E. (2017). Pathophysiology and immunological profile of myasthenia gravis and its subgroups. Curr Opin Immunol 49, 9-13.
Romi, F., Skeie, G.O., Aarli, J.A., and Gilhus, N.E. (2000). The Severity of Myasthenia Gravis Correlates With the Serum Concentration of Titin and Ryanodine Receptor Antibodies. Archives of Neurology 57, 1596-1600.
Romi, F., Skeie, G.O., Gilhus, N.E., and Aarli, J.A. (2005). Striational Antibodies in Myasthenia Gravis: Reactivity and Possible Clinical Significance. Archives of Neurology 62, 442-446.
Santulli, G., Nakashima, R., Yuan, Q., and Marks, A.R. (2017). Intracellular calcium release channels: an update. J Physiol 595, 3041-3051.
Selcen, D., Ohkawara, B., Shen, X.M., McEvoy, K., Ohno, K., and Engel, A.G. (2015). Impaired Synaptic Development, Maintenance, and Neuromuscular Transmission in LRP4-Related Myasthenia. JAMA Neurol 72, 889-896.
Shi, Y., Li, Z., Xu, Q., Wang, T., Li, T., Shen, J., Zhang, F., Chen, J., Zhou, G., and Ji, W. (2011). Common variants on 8p12 and 1q24. 2 confer risk of schizophrenia. Nature genetics 43, 1224.
Skeie, G.O., Mygland, A., Treves, S., Gilhus, N.E., Aarli, J.A., and Zorzato, F. (2003). Ryanodine receptor antibodies in myasthenia gravis: epitope mapping and effect on calcium release in vitro. Muscle Nerve 27, 81-89.
Stevens, C.F. (1993). Quantal release of neurotransmitter and long-term potentiation. Cell 72, 55-63.
Stiegler, A.L., Burden, S.J., and Hubbard, S.R. (2006). Crystal structure of the agrin-responsive immunoglobulin-like domains 1 and 2 of the receptor tyrosine kinase MuSK. J Mol Biol 364, 424-433.
Szczudlik, P., Szyluk, B., Lipowska, M., Ryniewicz, B., Kubiszewska, J., Dutkiewicz, M., Gilhus, N.E., and Kostera-Pruszczyk, A. (2014). Antititin antibody in early- and late-onset myasthenia gravis. Acta Neurol Scand 130, 229-233.
Taniguchi, M., Kurahashi, H., Noguchi, S., Fukudome, T., Okinaga, T., Tsukahara, T., Tajima, Y., Ozono, K., Nishino, I., and Nonaka, I. (2006). Aberrant neuromuscular junctions and delayed terminal muscle fiber maturation in α-dystroglycanopathies. Human molecular genetics 15, 1279-1289.
Treves, S., Jungbluth, H., Muntoni, F., and Zorzato, F. (2008). Congenital muscle disorders with cores: the ryanodine receptor calcium channel paradigm. Current Opinion in Pharmacology 8, 319-326.
Tsai, T.C., Lee, Y.L., Hsiao, W.C., Tsao, Y.P., and Chen, S.L. (2005). NRIP, a novel nuclear receptor interaction protein, enhances the transcriptional activity of nuclear receptors. J Biol Chem 280, 20000-20009.
Tüzün, E., and Christadoss, P. (2013). Complement associated pathogenic mechanisms in myasthenia gravis. Autoimmun Rev 12, 904-911.
Tzartos, S.J., Barkas, T., Cung, M.T., Mamalaki, A., Marraud, M., Orlewski, P., Papanastasiou, D., Sakarellos, C., Sakarellos-Daitsiotis, M., Tsantili, P., et al. (1998). Anatomy of the antigenic structure of a large membrane autoantigen, the muscle-type nicotinic acetylcholine receptor. Immunol Rev 163, 89-120.
Unwin, N. (1993). Neurotransmitter action: opening of ligand-gated ion channels. Cell 72, 31-41.
Unwin, N. (2013). Nicotinic acetylcholine receptor and the structural basis of neuromuscular transmission: insights from Torpedo postsynaptic membranes. Quarterly Reviews of Biophysics 46, 283-322.
Valenzuela, D.M., Stitt, T.N., DiStefano, P.S., Rojas, E., Mattsson, K., Compton, D.L., Nunez, L., Park, J.S., Stark, J.L., Gies, D.R., et al. (1995). Receptor tyrosine kinase specific for the skeletal muscle lineage: Expression in embryonic muscle, at the neuromuscular junction, and after injury. Neuron 15, 573-584.
Verschuuren, J.J., Huijbers, M.G., Plomp, J.J., Niks, E.H., Molenaar, P.C., Martinez-Martinez, P., Gomez, A.M., De Baets, M.H., and Losen, M. (2013). Pathophysiology of myasthenia gravis with antibodies to the acetylcholine receptor, muscle-specific kinase and low-density lipoprotein receptor-related protein 4. Autoimmun Rev 12, 918-923.
Vidarsson, G., Dekkers, G., and Rispens, T. (2014). IgG subclasses and allotypes: from structure to effector functions. Front Immunol 5, 520.
Xu, Y.K., and Nusse, R. (1998). The Frizzled CRD domain is conserved in diverse proteins including several receptor tyrosine kinases. Current Biology 8, R405-R406.
Yang, K.C., Chuang, K.W., Yen, W.S., Lin, S.Y., Chen, H.H., Chang, S.W., Lin, Y.S., Wu, W.L., Tsao, Y.P., Chen, W.P., et al. (2019). Deficiency of nuclear receptor interaction protein leads to cardiomyopathy by disrupting sarcomere structure and mitochondrial respiration. J Mol Cell Cardiol 137, 9-24.
Yumoto, N., Kim, N., and Burden, S.J. (2012). Lrp4 is a retrograde signal for presynaptic differentiation at neuromuscular synapses. Nature 489, 438-442.
Zhang, B., Luo, S., Dong, X.-P., Zhang, X., Liu, C., Luo, Z., Xiong, W.-C., and Mei, L. (2007). β-Catenin Regulates Acetylcholine Receptor Clustering in Muscle Cells through Interaction with Rapsyn. The Journal of Neuroscience 27, 3968.
Zhang, B., Luo, S., Wang, Q., Suzuki, T., Xiong, W.C., and Mei, L. (2008). LRP4 serves as a coreceptor of agrin. Neuron 60, 285-297.
Zhang, W., Coldefy, A.S., Hubbard, S.R., and Burden, S.J. (2011). Agrin binds to the N-terminal region of Lrp4 protein and stimulates association between Lrp4 and the first immunoglobulin-like domain in muscle-specific kinase (MuSK). J Biol Chem 286, 40624-40630.
Zhang, Y., Ye, J., Chen, D., Zhao, X., Xiao, X., Tai, S., Yang, W., and Zhu, D. (2006). Differential expression profiling between the relative normal and dystrophic muscle tissues from the same LGMD patient. Journal of Translational Medicine 4, 53.
Zisimopoulou, P., Brenner, T., Trakas, N., and Tzartos, S.J. (2013). Serological diagnostics in myasthenia gravis based on novel assays and recently identified antigens. Autoimmun Rev 12, 924-930.
Zisimopoulou, P., Evangelakou, P., Tzartos, J., Lazaridis, K., Zouvelou, V., Mantegazza, R., Antozzi, C., Andreetta, F., Evoli, A., Deymeer, F., et al. (2014). A comprehensive analysis of the epidemiology and clinical characteristics of anti-LRP4 in myasthenia gravis. J Autoimmun 52, 139-145.
Zong, Y., Zhang, B., Gu, S., Lee, K., Zhou, J., Yao, G., Figueiredo, D., Perry, K., Mei, L., and Jin, R. (2012). Structural basis of agrin-LRP4-MuSK signaling. Genes Dev 26, 247-258.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67028-
dc.description.abstract核受體交互作用蛋白 (Nuclear receptor interaction protein, NRIP),是一種鈣離子依賴性的攜鈣素 (calmodulin) 結合蛋白,由860個胺基酸組成,具有7個WD40 domain和1個IQ domain。在實驗室先前的研究中,我們發現NRIP可以調節肌肉的收縮和再生。此外,NRIP在小鼠腓腸肌中與乙醯膽鹼受體 (acetylcholine receptors, AChR) 複合物共定位,其中乙醯膽鹼受體複合物包括輔肌動蛋白異構體 (α-actitin 2, ACTN2),受體相連突觸蛋白 (rapsyn) 和AChR。而在本研究中,我們發現小鼠肌母細胞 (C2C12 cells) 中的內生性NRIP與內生性AChR彼此可有交互作用,從而進一步證實NRIP是AChR複合物在神經肌肉接合處 (neuromuscular junction, NMJ) 上的一個組成部分。
重症肌無力 (myasthenia gravis, MG) 是一種自體免疫疾病,其常見特徵是眼睛或骨骼肌的疲勞與無力。重症肌無力是由自身抗體攻擊NMJ的突觸後膜所引起,而在這項研究中,我們新發現了一種與MG相關的自身抗體,即NRIP自身抗體。我們使用西方墨點法 (Western blot) 對43名MG患者的血清進行了NRIP自身抗體檢測,發現了6例(14.0%)具有NRIP自身抗體的患者。我們還對NRIP自身抗體進行了抗原表位 (epitope) 分析,並確定了它們的主要免疫原性區域 (main immunogenic region, MIR) 可能位於NRIP之C端的IQ domain。此外,我們也分析了NRIP自身抗體的IgG亞類,發現它們主要由IgG1組成。為了了解NRIP自身抗體在MG中的角色,我們尚分析了MG患者的嚴重程度與NRIP自身抗體存在的相關性。我們發現,當AChR自身抗體存在時,若擁有NRIP自身抗體則會與更嚴重的MG有所關連。此外,MG嚴重程度會隨NRIP自身抗體的濃度上升而增加。綜上所述,NRIP自身抗體是一種新發現的MG相關自身抗體,其或可作為較嚴重型的MG之標誌。
zh_TW
dc.description.abstractNuclear receptor interaction protein (NRIP) is a Ca2+-dependent calmodulin binding protein, consisting of 860 amino acids, with 7 WD40 domains and 1 IQ motif. In our previous study, we found that NRIP can regulate muscle contraction and regeneration. NRIP colocalized with acetylcholine receptor (AChR) complex protein, including ACTN2, rapsyn, and AChR in gastrocnemius muscles of mice. In this study, we further demonstrated that endogenous NRIP can reciprocally interact with AChR in C2C12 cells, confirming that NRIP is a component of AChR complex at neuromuscular junction (NMJ).
Myasthenia gravis (MG) is an autoimmune disease, characterized by fatigue and weakness of ocular or skeletal muscles. MG is caused by autoantibodies against postsynaptic membrane of NMJ. In this study, we identified a novel MG-related autoantibody, NRIP autoantibody. We used Western blot to do NRIP autoantibodies test of the sera from 43 MG patients and found 6 patients (14.0%) having NRIP autoantibodies. We also performed epitope mapping of NRIP autoantibodies and found that their main immunogenic region is likely on the IQ motif of NRIP, which is on the NRIP-C terminal. In addition, we showed the IgG subclass of NRIP autoantibodies mainly to be IgG1. To understand the role of NRIP autoantibodies in MG, we also analyzed the correlation of MG severity and the presence of NRIP autoantibodies in patients with MG. We found that the presence of NRIP autoantibodies well correlated with a more severe form of MG when AChR autoantibodies existed. Besides, the higher the concentration of NRIP autoantibodies, the more severe MG severity. In conclusion, NRIP autoantibody is a newly identified MG-related autoantibody, which may be a biomarker of severe MG.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:17:43Z (GMT). No. of bitstreams: 1
U0001-1608202020552500.pdf: 11108863 bytes, checksum: 0dd68738894eb470d59f01c024049877 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員審定書 I
誌謝 II
中文摘要 III
Abstract IV
Chapter 1 Introduction 1
1.1 Characteristics of nuclear receptor interaction protein (NRIP). 1
1.2 NRIP regulates muscle contraction and regeneration. 3
1.3 Characteristics of neuromuscular junction (NMJ). 4
1.3.1 Agrin 5
1.3.2 Lrp4 6
1.3.3 MuSK 7
1.3.4 AChR 8
1.4 The role of NRIP in neuromuscular junction. 9
1.5 Myasthenia gravis (MG). 10
1.5.1 Epidemiology of MG. 12
1.5.2 Pathogenesis of MG. 13
1.5.3 Diagnosis and treatment of MG. 15
1.6 Aims of the study 16
Chapter 2 Materials and Methods 18
2.1 Patients 18
2.2 Cell culture 19
2.2 HEK293T cell transfection 19
2.3 Protein extraction and Western blot 20
2.4 Immunoprecipitation 21
2.5 Immunofluorescence staining 21
2.6 Statistical analysis 22
Chapter 3 Results 23
3.1 Endogenous NRIP reciprocally interacts with AChR-α in C2C12 cells. 23
3.2 NRIP autoantibodies are detected in patients with MG. 25
3.3 Existence of NRIP autoantibodies correlates with the disease severity of MG. 27
3.4 Most of the epitopes against by NRIP autoantibodies are on the C-terminal but excluding WD6 and WD7 domains. 31
3.5 Most NRIP autoantibodies belong to IgG1 subclass. 33
3.6 The NRIP autoantibodies in healthy controls. 34
Chapter 4 Discussion 36
Chapter 5 Figures 41
Chapter 6 Table 53
Chapter 7 Supplementary information 55
Chapter 8 Appendix 60
Chapter 9 References 61
dc.language.isoen
dc.subject核受體交互作用蛋白zh_TW
dc.subject重症肌無力zh_TW
dc.subject自身抗體zh_TW
dc.subject抗原表位zh_TW
dc.subjectIgG亞類zh_TW
dc.subjectautoantibodiesen
dc.subjectmyasthenia gravisen
dc.subjectNRIPen
dc.subjectIgG subclassen
dc.subjectepitopeen
dc.titleNRIP自身抗體在重症肌無力所扮演的角色zh_TW
dc.titleThe Role of NRIP Autoantibodies in Myasthenia Gravisen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡力凱(Li-Kai Tsai),張永祺(Yung-Chi Chang),楊宏志(Hung-Chih Yang)
dc.subject.keyword核受體交互作用蛋白,重症肌無力,自身抗體,抗原表位,IgG亞類,zh_TW
dc.subject.keywordNRIP,myasthenia gravis,autoantibodies,epitope,IgG subclass,en
dc.relation.page72
dc.identifier.doi10.6342/NTU202003615
dc.rights.note有償授權
dc.date.accepted2020-08-17
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept微生物學研究所zh_TW
顯示於系所單位:微生物學科所

文件中的檔案:
檔案 大小格式 
U0001-1608202020552500.pdf
  未授權公開取用
10.85 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved