請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67026完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭宗記(Tzong-Jih Cheng) | |
| dc.contributor.author | Ching-Yu Pan | en |
| dc.contributor.author | 潘慶育 | zh_TW |
| dc.date.accessioned | 2021-06-17T01:17:38Z | - |
| dc.date.available | 2019-08-31 | |
| dc.date.copyright | 2017-08-31 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-14 | |
| dc.identifier.citation | 1. 山崎肯哉。2000。養液栽培全編。東京:博友社。
2. 行政院農委會。2016。土壤肥力診斷服務。台北:行政院農委會。網址:https://www.tari.gov.tw/df_ufiles/c/file_20161230-01.pdf。上網日期:105年12月。 3. 游舒淇。2016。虹吸式潮汐淹灌系統應用於植物工場內萵苣與芝麻菜栽培之探討。碩士論文。台北:國立臺灣大學生物資源暨農學院生物產業機電工程學系。 4. 馮丁樹。2002。設施生產自動化技術,第八章養液栽培之應用技術。網址:http://www.ecaa.ntu.edu.tw/weifang/Hort/default.htm。上網日期:105年2月。 5. 廖慶樑、劉禎祺。2005。合理化施肥理念。載於戴振耀、林俊義、蔡武雄、廖慶樑 (主編),合理化施肥專刊 (15-23 頁)。臺中:行政院農業委員會農業試驗所、中華永續農業協會。 6. Abbasi, A. Z., Islam, N., & Shaikh, Z. A. 2014. A review of wireless sensors and networks' applications in agriculture. Computer Standards & Interfaces, 36(2), 263-270. 7. Adamchuk, V. I., Lund, E. D., Sethuramasamyraja, B., Morgan, M. T., Dobermann, A., & Marx, D. B. 2005. Direct measurement of soil chemical properties on-the-go using ion-selective electrodes. Computers and Electronics in Agriculture, 48(3), 272-294. 8. Analog Devices, 2014. ADG708 Datasheet. On-line available at: http://www.analog.com/media/en/technical-documentation/data-sheets/ADG708_709.pdf. Accessed Jan. 2016. 9. Bamsey, M., Graham, T., Thompson, C., Berinstain, A., Scott, A., & Dixon, M. 2012. Ion-specific nutrient management in closed systems: the necessity for ion-selective sensors in terrestrial and space-based agriculture and water management systems. Sensors, 12(10), 13349-13392. 10. Barr, M., & Massa, A. 2006. Programming embedded systems: with C and GNU development tools. ' O'Reilly Media, Inc.'. 11. Baucke, F. G. K. 1985. The glass electrode—applied electrochemistry of glass surfaces. Journal of Non-Crystalline Solids, 73(1-3), 215-231. 12. Birrell, S. J., & Hummel, J. W. 2001. Real-time multi ISFET/FIA soil analysis system with automatic sample extraction. Computers and Electronics in Agriculture, 32(1), 45-67. 13. Christy, C. D., Drummond, P., & Laird, D. A. 2003. An on-the-go spectral reflectance sensor for soil. In 2003 ASAE Annual Meeting (p. 1). American Society of Agricultural and Biological Engineers. 14. Cloutier, G. R., Dixon, M. A., & Arnold, K. E. 1997. Evaluation of sensor technologies for automated control of nutrient solutions in life support systems using higher plants. In Proc. 6th European Symp. Space Environ. Control Systems (pp. 851-858). 15. Dick, W. A., & Tabatabai, M. A. 1979. Ion chromatographic determination of sulfate and nitrate in soils. Soil Science Society of America Journal, 43(5), 899-904. 16. Fay, C., Anastasova, S., Slater, C., Buda, S. T., Shepherd, R., Corcoran, B., ... & Diamond, D. 2011. Wireless ion-selective electrode autonomous sensing system. IEEE Sensors Journal, 11(10), 2374-2382. 17. Fischer, J. B., & Miller, J. H. 2005. Ion chromatography as an alternative to standard methods for analysis of macro-nutrients in Mehlich 1 extracts of unfertilized forest soils. Communications in soil science and plant analysis, 35(15-16), 2191-2208. 18. Gartner, 2016. Global market share held by the leading smartphone operating systems in sales to end users from 1st quarter 2009 to 4th quarter 2016. On-line available at: https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/. Accessed Apr. 2017. 19. Gieling, T. H., Van Straten, G., Janssen, H. J. J., & Wouters, H. 2005. ISE and chemfet sensors in greenhouse cultivation. Sensors and Actuators B: Chemical, 105(1), 74-80. 20. Goadrich, M. H., & Rogers, M. P. 2011. Smart smartphone development: iOS versus Android. In Proceedings of the 42nd ACM technical symposium on Computer science education (pp. 607-612). ACM. 21. Gomez, C., Oller, J., & Paradells, J. 2012. Overview and evaluation of bluetooth low energy: An emerging low-power wireless technology. Sensors, 12(9), 11734-11753. 22. Google, 2007. Android Developers–BluetoothLeGatt Sample Code. On-line available at: https://developer.android.com/downloads/samples/BluetoothLeGatt.zip. Accessed Mar. 2016. 23. Gronli, T. M., Hansen, J., Ghinea, G., & Younas, M. 2014 Mobile application platform heterogeneity: Android vs Windows Phone vs iOS vs Firefox OS. In Advanced Information Networking and Applications (AINA), 2014 IEEE 28th International Conference on (pp. 635-641). IEEE. 24. Gutierrez, M., Alegret, S., Caceres, R., Casadesús, J., Marfa, O., & Del Valle, M. 2007. Application of a potentiometric electronic tongue to fertigation strategy in greenhouse cultivation. Computers and Electronics in Agriculture, 57(1), 12-22. 25. Haby, V. A., Russelle, M. P., & Skogley, E. O. 1990. Testing soils for potassium, calcium, and magnesium. Testing soils for potassium, calcium, and magnesium., 181-227. 26. Heath, Steve 2003. Embedded systems design. EDN series for design engineers (2 ed.). Newnes. p. 8-10. ISBN 978-0-7506-5546-0. 27. Jones Jr, J. B. 1998. Soil test methods: past, present, and future use of soil extractants. Communications in Soil Science & Plant Analysis, 29(11-14), 1543-1552. 28. Kim, H. J., Kim, W. K., Roh, M. Y., Kang, C. I., Park, J. M., & Sudduth, K. A. 2013. Automated sensing of hydroponic macronutrients using a computer-controlled system with an array of ion-selective electrodes. Computers and electronics in agriculture, 93, 46-54. 29. Kwakye, S., & Baeumner, A. 2007. An embedded system for portable electrochemical detection. Sensors and Actuators B: Chemical, 123(1), 336-343. 30. Lee, J. S., Su, Y. W., & Shen, C. C. 2007. A comparative study of wireless protocols: Bluetooth, UWB, ZigBee, and Wi-Fi. In Industrial Electronics Society, 2007. IECON 2007. 33rd Annual Conference of the IEEE (pp. 46-51). Ieee. 31. Lindner, E., & Pendley, B. D. 2013. A tutorial on the application of ion-selective electrode potentiometry: an analytical method with unique qualities, unexplored opportunities and potential pitfalls; Tutorial. Analytica chimica acta, 762, 1-13. 32. Loreto, A. B., & Morgan, M. T. 1996. Development of an automated system for field measurement of soil nitrate. Transaction of ASAE. 33. Mehlich, A. 1984. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Communications in Soil Science & Plant Analysis, 15(12), 1409-1416. 34. Michael Barr; Anthony J. Massa 2006. 'Introduction'. Programming embedded systems: with C and GNU development tools. O'Reilly. pp. 1–2. ISBN 978-0-596-00983-0. 35. Radu, A., Anastasova-Ivanova, S., Paczosa-Bator, B., Danielewski, M., Bobacka, J., Lewenstam, A., & Diamond, D. 2010. Diagnostic of functionality of polymer membrane–based ion selective electrodes by impedance spectroscopy. Analytical Methods, 2(10), 1490-1498. 36. Sandifer, J. R., & Buck, R. P. 1974. Impedance characteristics of ion selective glass electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 56(3), 385-398. 37. Sethuramasamyraja, B., Adamchuk, V. I., Dobermann, A., Marx, D. B., Jones, D. D., & Meyer, G. E. 2008. Agitated soil measurement method for integrated on-the-go mapping of soil pH, potassium and nitrate contents. Computers and electronics in agriculture, 60(2), 212-225. 38. Sethuramasamyraja, B., Adamchuk, V. I., Marx, D. B., & Dobermann, A. 2005. Evaluation of ion-selective electrode methodology for integrated on-the-go mapping of soil chemical properties (pH, K & NO3). In 2005 ASAE Annual Meeting (p. 1). American Society of Agricultural and Biological Engineers. 39. Shibusawa, S. 2003, July. On-line real time soil sensor. In Advanced Intelligent Mechatronics, 2003. AIM 2003. Proceedings. 2003 IEEE/ASME International Conference on (Vol. 2, pp. 1061-1066). IEEE. 40. Sibley, K. J., Brewster, G. R., Astatkie, T., Adsett, J. F., & Struik, P. C. 2010. In-field measurement of soil nitrate using an ion-selective electrode. In Advances in Measurement Systems. InTech. 41. Sinfield, J. V., Fagerman, D., & Colic, O. 2010. Evaluation of sensing technologies for on-the-go detection of macro-nutrients in cultivated soils. Computers and Electronics in Agriculture, 70(1), 1-18. 42. Texas Instruments, 2006. LMP7715 Datasheet. On-line available at: http://www.ti.com/lit/ds/symlink/lmp7715.pdf. Accessed Feb. 2016. 43. Texas Instruments, 2008. LMP7721 Datasheet. On-line available at: http://www.ti.com/lit/ds/symlink/lmp7721.pdf. Accessed Dec. 2015. 44. Texas Instruments, 2010. LMP7721 Multi-Function Evaluation Board Users' Guide. On-line available at: http://www.ti.com/lit/ug/snou004/snou004.pdf. Accessed Oct. 2015. 45. Texas Instruments, 2012. SmartRF06 Evaluation Board Schematic. On-line available at: http://www.ti.com/lit/df/swrr143/swrr143.pdf. Accessed Jun. 2016. 46. Texas Instruments, 2012. SmartRF06 Evaluation Board User’s Guide. On-line available at: http://www.ti.com/lit/ug/swru321b/swru321b.pdf. Accessed Jan. 2016. 47. Texas Instruments, 2015. CC2650 Datasheet. On-line available at: http://www.ti.com/lit/ds/symlink/cc2650.pdf. Accessed Jan. 2016. 48. Texas Instruments, 2015. CC26xx/CC13xx Sensor Controller Studio Version 1.4. On-line available at: http://www.ti.com/lit/ml/swru439c/swru439c.pdf. Accessed Apr. 2016. 49. Texas Instruments, 2016. SimpleLink Academy v1.07 Bluetooth Low Energy Custom Profile. On-line available at: http://software-dl.ti.com/lprf/simplelink_academy/modules/ble_01_custom_profile/ble_01_custom_profile.html. Accessed Jun. 2016. 50. Texas Instruments, 2016. TI-RTOS 2.16 CC13xx/CC26xx DriverLib and RF driver. On-line available at: http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/tirtos/2_16_01_14/exports/tirtos_cc13xx_cc26xx_setupwin32_2_16_01_14.exe. Accessed May. 2016. 51. Texas Instruments, 2016. TI-RTOS 2.20 for CC13xx/CC26xx SimpleLink™ Wireless MCUs Getting Started Guide. On-line available at: http://www.ti.com/lit/ug/spruhu7d/spruhu7d.pdf. Accessed Jun. 2016. 52. Texas Instruments, 2016. TI-RTOS 2.20 User’s Guide. On-line available at: http://www.ti.com/lit/ug/spruhd4m/spruhd4m.pdf. Accessed Jun. 2016. 53. The Apache Software Foundation, 2003. Apache Commons Math 3.3 API - Class SimpleRegression. On-line available at: http://commons.apache.org/proper/commons-math/javadocs/api-3.3/org/apache/commons/math3/stat/regression/SimpleRegression.html. Accessed Apr. 2017. 54. Umezawa, Y., Bühlmann, P., Umezawa, K., Tohda, K., & Amemiya, S. 2000. Potentiometric selectivity coefficients of ion-selective electrodes. Part I. Inorganic cations (technical report). Pure and Applied Chemistry, 72(10), 1851-2082. 55. USDA, 1999. Soil Quality Test Kit Guide. On-line available at: https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1044790.pdf. Accessed Sep. 2015. 56. Wang, X., Jiang, J., & Yang, H. 2011. An Interface Circuit for Ion-selective Electrode Sensors. Procedia Engineering, 15, 2609-2613. 57. Zerger, A., Rossel, R. V., Swain, D. L., Wark, T., Handcock, R. N., Doerr, V. A. J., ... & Lobsey, C. 2010. Environmental sensor networks for vegetation, animal and soil sciences. International Journal of Applied Earth Observation and Geoinformation, 12(5), 303-316. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67026 | - |
| dc.description.abstract | 耕作環境中的化學營養成分對於作物生長有密切關係,而農民僅依據酸鹼度、電導度及氮含量作為粗略的判斷指標,因此經常造成過度施肥並引發環境問題。現有的實驗室檢測程序多以耗時之分析儀器為主,尚難滿足即時養分管理之需求。本研究以取樣與樣品前處理較為簡易的水耕養液作為感測對象物,開發具即時性、易攜帶且低成本的現場水耕巨量營養素感測系統,待系統發展完善即可整合土壤採樣與前處理等自動化設備,達到土壤營養素的現場感測。本系統感測器選用鉀、銨根、硝酸根與氫離子選擇電極,經適當的感測訊號調理電路處理,由微處理器控制及運算類比訊號,並以其內建藍芽模組將各離子濃度訊號傳送至手機,進行校正、處理、紀錄與顯示。此外,由干擾修正法計算鉀、銨根與硝酸根離子選擇電極的選擇因子,並確立干擾修正公式,以軟體方式補償離子選擇電極選擇性的缺陷。目前已完成四層堆疊結構 (5×5×8 cm)之電子電路模組,經確效證實訊號處理功能與儀器有極優的一致性 (相關係數0.99),並具有不同的電氣連接界面膜組可供適合的離子選擇電極接頭組合。嵌入式系統及在智慧型電話 (Smart phone)上所開發軟體之通訊與程序 (含校正)執行,亦經確認可有效地傳送並呈現4通道感測器濃度資料。以本系統量測山崎改良版養液配方,結果顯示鉀與硝酸根離子選擇電極選擇性佳,並不需進行修正;而銨根離子選擇電極經聯立干擾修正後靈敏度由偏移48.1%修正至-5.6%,因其選擇性不足,故此法僅適用於鉀離子不超過銨根離子濃度一個數量級之情況。未來可著重在系統性能驗證與提升系統可攜帶性,並整合自動化設備,實現植物工場養液及土壤養分離子濃度的現場感測。 | zh_TW |
| dc.description.abstract | Precision agriculture for crop management requires the collection of high temporal and spatial resolution soil property data. Crop growth is closely related to nutrition, but farmers currently judge the soil or solution nutrients whether is suitable are based only on electrical conductivity and pH value. Although both parameters can be detected rapidly and use low-cost measurement tools, they do not provide information on individual nutrient concentrations directly. In the laboratory, most of the use of analytical instruments and time-consuming test procedures, and it is difficult for on-site nutrient management. Due to inconvenience of sensing nutrient concentrations, farmers often over-fertilize and cause environmental impact. The aim of this study is to develop a system which is real-time, portable and low-cost for on-site monitoring macronutrients in hydroponics. The sensor sub-system contains 4 ion-selective electrodes (ISE) of nitrate, ammonium, potassium and hydrogen. Then sensing signals are processed by an appropriate signal conditioning circuit and an embedded system. After signal processing, the ion concentration data is transmitted through the Bluetooth module of the embedded system to the mobile phone for correction, processing, calibration, recording and display. Additionally, the selectivity coefficients of ion-selective electrodes are determined by fixed interference method (FIM) and interference compensation by software method. The results showed that this system has a good correlation with the data measured by a commercial pH meter and an electrochemical instrument (correlation coefficient 0.99). Furthermore, an embedded system and an App program developed on Android-based mobile phones have also been verified to effectively transmit and display 4 sensors concentrations data. Both of nitrate and potassium ISEs do not need interference compensation when the system used in a modified nutrient solution developed by Yamazaki due to their well selectivity. However, the ammonium ISE have to be compensated (sensitivity bias was corrected to -5.6% from 48.1%) by a correction equation developed in this work. Due to poor selectivity of the ammonium ISE, this method is only applicable in the condition that the potassium ion concentration does not exceed one order magnitude of the ammonium ion concentration. In the future, the task could be focused on improving feasibility of the system applications in field and developing the process of sample sampling as well as preparation. Furthermore, the system would be tested in different environments, such as plant factory and on-site soil in farm field. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T01:17:38Z (GMT). No. of bitstreams: 1 ntu-106-R04631035-1.pdf: 6717761 bytes, checksum: 69824ac9d7aa0bc294183bd28acb1a07 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 中文摘要 iii Abstract iv 目 錄 vi 圖 目 錄 ix 表 目 錄 xii 第一章 前言 1 1.1 背景介紹 1 1.2 研究目的 2 1.3 研究架構 2 第二章 文獻探討 5 2.1 現行植物養分濃度評估方法 5 2.1.1 土壤評估方法 5 2.1.2 水耕養液評估方法 8 2.2植物巨量營養素感測技術的發展 9 2.3 離子選擇電極 12 2.3.1 離子選擇電極感測原理 12 2.3.2 離子選擇電極之選擇因子 13 2.3.3 水耕養液中離子元素監控系統 16 2.3.4 土壤中離子元素感測系統 19 2.4 感測系統建置之技術 21 2.4.1 離子選擇電極極大內阻之訊號調理 21 2.4.2 嵌入式系統 22 2.4.3 無線通訊技術 23 2.4.4 行動裝置作業系統開發比較 25 第三章 研究方法 27 3.1 實驗藥品與製備 27 3.1.1 實驗藥品 27 3.1.2 緩衝溶液製備 28 3.1.3 離子選擇電極之校正液製備 28 3.1.4 干擾修正法試劑製備 28 3.1.5植物養液製備 30 3.1.6植物養液之單一離子失衡試劑製備 32 3.2 實驗儀器與軟體 33 3.2.1 實驗儀器 33 3.2.2 實驗軟體 34 3.3 系統開發與模組化 35 3.3.1 養分離子感測模組 36 3.3.2 運算與通訊模組 40 3.3.3 校正與顯示模組 42 3.4干擾修正法 43 3.4.1 選擇因子確立 43 3.4.2 干擾離子影響程度量化 43 3.4.3 干擾修正法公式建立 45 3.4.4 干擾修正法公式驗證 45 第四章 結果與討論 47 4.1系統建構 47 4.1.1 養分離子感測模組 49 4.1.2 運算與通訊模組 56 4.1.3 校正與顯示模組 62 4.2植物養分感測系統之系統查證 74 4.2.1 養分離子感測模組 74 4.2.2 運算與通訊模組 76 4.3干擾修正 78 4.3.1 儀器性能比對 78 4.3.2 各離子選擇電極之性能 80 4.3.3 選擇因子修正效果之驗證 88 4.3.4 干擾修正法聯立方程式 91 4.4植物養液實際配方與簡易配方之差異性比較 98 4.5系統應用於山崎配方作物別適宜養液之可行性比較 99 第五章 結論 101 第六章 參考文獻 103 | |
| dc.language.iso | zh-TW | |
| dc.subject | 巨量營養素 | zh_TW |
| dc.subject | 干擾修正法 | zh_TW |
| dc.subject | 離子感測系統 | zh_TW |
| dc.subject | 精準農業 | zh_TW |
| dc.subject | Macronutrients | en |
| dc.subject | Precision agriculture | en |
| dc.subject | Fixed interference method | en |
| dc.subject | Ion-sensing system | en |
| dc.title | 基於離子選擇電極之可攜式水耕巨量營養素感測系統 | zh_TW |
| dc.title | Portable Macronutrients Sensing System Based on Ion-Selective Electrodes Used in Hydroponics | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳林祈(Lin-Chi Chen),方煒(Wei Fang),吳靖宙(Ching-Chou Wu),楊朝旺(Chao-Wang Young) | |
| dc.subject.keyword | 精準農業,巨量營養素,離子感測系統,干擾修正法, | zh_TW |
| dc.subject.keyword | Precision agriculture,Macronutrients,Ion-sensing system,Fixed interference method, | en |
| dc.relation.page | 109 | |
| dc.identifier.doi | 10.6342/NTU201703203 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-08-14 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 6.56 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
