Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 免疫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66992
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor繆希椿
dc.contributor.authorYu-Hua Hsuen
dc.contributor.author許毓華zh_TW
dc.date.accessioned2021-06-17T01:16:35Z-
dc.date.available2022-09-08
dc.date.copyright2017-09-08
dc.date.issued2017
dc.date.submitted2017-08-14
dc.identifier.citation1. Germain, R.N., T-cell development and the CD4-CD8 lineage decision. Nat Rev Immunol, 2002. 2(5): p. 309-22.
2. Zhu, J., H. Yamane, and W.E. Paul, Differentiation of effector CD4 T cell populations (*). Annu Rev Immunol, 2010. 28: p. 445-89.
3. Szabo, S.J., et al., A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell, 2000. 100(6): p. 655-69.
4. Usui, T., et al., T-bet regulates Th1 responses through essential effects on GATA-3 function rather than on IFNG gene acetylation and transcription. J Exp Med, 2006. 203(3): p. 755-66.
5. Hsieh, C.S., et al., Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science, 1993. 260(5107): p. 547-9.
6. Boehm, U., et al., Cellular responses to interferon-gamma. Annu Rev Immunol, 1997. 15: p. 749-95.
7. Zheng, W. and R.A. Flavell, The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell, 1997. 89(4): p. 587-96.
8. Usui, T., et al., GATA-3 suppresses Th1 development by downregulation of Stat4 and not through effects on IL-12Rbeta2 chain or T-bet. Immunity, 2003. 18(3): p. 415-28.
9. Ho, I.C., D. Lo, and L.H. Glimcher, c-maf promotes T helper cell type 2 (Th2) and attenuates Th1 differentiation by both interleukin 4-dependent and -independent mechanisms. J Exp Med, 1998. 188(10): p. 1859-66.
10. Le Gros, G., et al., Generation of interleukin 4 (IL-4)-producing cells in vivo and in vitro: IL-2 and IL-4 are required for in vitro generation of IL-4-producing cells. J Exp Med, 1990. 172(3): p. 921-9.
11. Harrington, L.E., et al., Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol, 2005. 6(11): p. 1123-32.
12. Park, H., et al., A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol, 2005. 6(11): p. 1133-41.
13. Ouyang, W., J.K. Kolls, and Y. Zheng, The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity, 2008. 28(4): p. 454-67.
14. Ivanov, II, et al., The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell, 2006. 126(6): p. 1121-33.
15. Yang, X.O., et al., STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J Biol Chem, 2007. 282(13): p. 9358-63.
16. Yang, X.O., et al., T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity, 2008. 28(1): p. 29-39.
17. Veldhoen, M., et al., TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity, 2006. 24(2): p. 179-89.
18. Mangan, P.R., et al., Transforming growth factor-beta induces development of the T(H)17 lineage. Nature, 2006. 441(7090): p. 231-4.
19. Bettelli, E., et al., Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature, 2006. 441(7090): p. 235-8.
20. Harty, J.T., A.R. Tvinnereim, and D.W. White, CD8+ T cell effector mechanisms in resistance to infection. Annu Rev Immunol, 2000. 18: p. 275-308.
21. Chrivia, J.C., et al., Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature, 1993. 365(6449): p. 855-9.
22. Vo, N. and R.H. Goodman, CREB-binding protein and p300 in transcriptional regulation. J Biol Chem, 2001. 276(17): p. 13505-8.
23. Eckner, R., et al., Molecular cloning and functional analysis of the adenovirus E1A-associated 300-kD protein (p300) reveals a protein with properties of a transcriptional adaptor. Genes Dev, 1994. 8(8): p. 869-84.
24. Goodman, R.H. and S. Smolik, CBP/p300 in cell growth, transformation, and development. Genes Dev, 2000. 14(13): p. 1553-77.
25. Janknecht, R. and T. Hunter, Transcription. A growing coactivator network. Nature, 1996. 383(6595): p. 22-3.
26. Chan, H.M. and N.B. La Thangue, p300/CBP proteins: HATs for transcriptional bridges and scaffolds. J Cell Sci, 2001. 114(Pt 13): p. 2363-73.
27. Korzus, E., et al., Transcription factor-specific requirements for coactivators and their acetyltransferase functions. Science, 1998. 279(5351): p. 703-7.
28. Bannister, A.J. and T. Kouzarides, The CBP co-activator is a histone acetyltransferase. Nature, 1996. 384(6610): p. 641-3.
29. Ogryzko, V.V., et al., The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell, 1996. 87(5): p. 953-9.
30. Soutoglou, E., et al., Transcription factor-dependent regulation of CBP and P/CAF histone acetyltransferase activity. EMBO J, 2001. 20(8): p. 1984-92.
31. Shiama, N., The p300/CBP family: integrating signals with transcription factors and chromatin. Trends Cell Biol, 1997. 7(6): p. 230-6.
32. Petrij, F., et al., Rubinstein-Taybi syndrome caused by mutations in the transcriptional co-activator CBP. Nature, 1995. 376(6538): p. 348-51.
33. Breuning, M.H., et al., Rubinstein-Taybi syndrome caused by submicroscopic deletions within 16p13.3. Am J Hum Genet, 1993. 52(2): p. 249-54.
34. Hennekam, R.C., et al., Deletion at chromosome 16p13.3 as a cause of Rubinstein-Taybi syndrome: clinical aspects. Am J Hum Genet, 1993. 52(2): p. 255-62.
35. Borrow, J., et al., The translocation t(8;16)(p11;p13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB-binding protein. Nat Genet, 1996. 14(1): p. 33-41.
36. Muraoka, M., et al., p300 gene alterations in colorectal and gastric carcinomas. Oncogene, 1996. 12(7): p. 1565-9.
37. Sobulo, O.M., et al., MLL is fused to CBP, a histone acetyltransferase, in therapy-related acute myeloid leukemia with a t(11;16)(q23;p13.3). Proc Natl Acad Sci U S A, 1997. 94(16): p. 8732-7.
38. Gayther, S.A., et al., Mutations truncating the EP300 acetylase in human cancers. Nat Genet, 2000. 24(3): p. 300-3.
39. Yao, T.P., et al., Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. Cell, 1998. 93(3): p. 361-72.
40. Oike, Y., et al., Mice homozygous for a truncated form of CREB-binding protein exhibit defects in hematopoiesis and vasculo-angiogenesis. Blood, 1999. 93(9): p. 2771-9.
41. Kung, A.L., et al., Gene dose-dependent control of hematopoiesis and hematologic tumor suppression by CBP. Genes Dev, 2000. 14(3): p. 272-7.
42. Rebel, V.I., et al., Distinct roles for CREB-binding protein and p300 in hematopoietic stem cell self-renewal. Proc Natl Acad Sci U S A, 2002. 99(23): p. 14789-94.
43. Kang-Decker, N., et al., Loss of CBP causes T cell lymphomagenesis in synergy with p27Kip1 insufficiency. Cancer Cell, 2004. 5(2): p. 177-89.
44. Riggins, P.S. and N.A. Clipstone, T cell activation signals upregulate CBP-dependent transcriptional activity. Biochem Biophys Res Commun, 2001. 281(4): p. 842-50.
45. Falvo, J.V., et al., A stimulus-specific role for CREB-binding protein (CBP) in T cell receptor-activated tumor necrosis factor alpha gene expression. Proc Natl Acad Sci U S A, 2000. 97(8): p. 3925-9.
46. Kasper, L.H., et al., Conditional knockout mice reveal distinct functions for the global transcriptional coactivators CBP and p300 in T-cell development. Mol Cell Biol, 2006. 26(3): p. 789-809.
47. Fukuyama, T., et al., Histone acetyltransferase CBP is vital to demarcate conventional and innate CD8+ T-cell development. Mol Cell Biol, 2009. 29(14): p. 3894-904.
48. Ghosh, S., et al., Regulatory T Cell Modulation by CBP/EP300 Bromodomain Inhibition. J Biol Chem, 2016. 291(25): p. 13014-27.
49. Hammitzsch, A., et al., CBP30, a selective CBP/p300 bromodomain inhibitor, suppresses human Th17 responses. Proc Natl Acad Sci U S A, 2015. 112(34): p. 10768-73.
50. Merika, M., et al., Recruitment of CBP/p300 by the IFN beta enhanceosome is required for synergistic activation of transcription. Mol Cell, 1998. 1(2): p. 277-87.
51. Zhong, H., R.E. Voll, and S. Ghosh, Phosphorylation of NF-kappa B p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300. Mol Cell, 1998. 1(5): p. 661-71.
52. Mukherjee, S.P., et al., Analysis of the RelA:CBP/p300 interaction reveals its involvement in NF-kappaB-driven transcription. PLoS Biol, 2013. 11(9): p. e1001647.
53. Hayden, M.S., A.P. West, and S. Ghosh, NF-kappaB and the immune response. Oncogene, 2006. 25(51): p. 6758-80.
54. Lawrence, T., The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol, 2009. 1(6): p. a001651.
55. Siebenlist, U., K. Brown, and E. Claudio, Control of lymphocyte development by nuclear factor-kappaB. Nat Rev Immunol, 2005. 5(6): p. 435-45.
56. Perkins, N.D., Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol, 2007. 8(1): p. 49-62.
57. Hoffmann, A., G. Natoli, and G. Ghosh, Transcriptional regulation via the NF-kappaB signaling module. Oncogene, 2006. 25(51): p. 6706-16.
58. Huang, W.C., et al., Phosphorylation of CBP by IKKalpha promotes cell growth by switching the binding preference of CBP from p53 to NF-kappaB. Mol Cell, 2007. 26(1): p. 75-87.
59. Rubin, D.C., A. Shaker, and M.S. Levin, Chronic intestinal inflammation: inflammatory bowel disease and colitis-associated colon cancer. Front Immunol, 2012. 3: p. 107.
60. Fuss, I.J., et al., Disparate CD4+ lamina propria (LP) lymphokine secretion profiles in inflammatory bowel disease. Crohn's disease LP cells manifest increased secretion of IFN-gamma, whereas ulcerative colitis LP cells manifest increased secretion of IL-5. J Immunol, 1996. 157(3): p. 1261-70.
61. Kobayashi, T., et al., IL23 differentially regulates the Th1/Th17 balance in ulcerative colitis and Crohn's disease. Gut, 2008. 57(12): p. 1682-9.
62. Rovedatti, L., et al., Differential regulation of interleukin 17 and interferon gamma production in inflammatory bowel disease. Gut, 2009. 58(12): p. 1629-36.
63. Atreya, R., et al., Blockade of interleukin 6 trans signaling suppresses T-cell resistance against apoptosis in chronic intestinal inflammation: evidence in crohn disease and experimental colitis in vivo. Nat Med, 2000. 6(5): p. 583-8.
64. Wolk, K., et al., IL-22 increases the innate immunity of tissues. Immunity, 2004. 21(2): p. 241-54.
65. Boniface, K., et al., IL-22 inhibits epidermal differentiation and induces proinflammatory gene expression and migration of human keratinocytes. J Immunol, 2005. 174(6): p. 3695-702.
66. Spits, H., et al., Innate lymphoid cells--a proposal for uniform nomenclature. Nat Rev Immunol, 2013. 13(2): p. 145-9.
67. Wolk, K., et al., Cutting edge: immune cells as sources and targets of the IL-10 family members? J Immunol, 2002. 168(11): p. 5397-402.
68. Liang, S.C., et al., Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med, 2006. 203(10): p. 2271-9.
69. Chung, Y., et al., Expression and regulation of IL-22 in the IL-17-producing CD4+ T lymphocytes. Cell Res, 2006. 16(11): p. 902-7.
70. Eyerich, S., et al., Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling. J Clin Invest, 2009. 119(12): p. 3573-85.
71. Martin, B., et al., Interleukin-17-producing gammadelta T cells selectively expand in response to pathogen products and environmental signals. Immunity, 2009. 31(2): p. 321-30.
72. Zenewicz, L.A., et al., Innate and adaptive interleukin-22 protects mice from inflammatory bowel disease. Immunity, 2008. 29(6): p. 947-57.
73. Zindl, C.L., et al., IL-22-producing neutrophils contribute to antimicrobial defense and restitution of colonic epithelial integrity during colitis. Proc Natl Acad Sci U S A, 2013. 110(31): p. 12768-73.
74. Sugimoto, K., et al., IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis. J Clin Invest, 2008. 118(2): p. 534-44.
75. Pickert, G., et al., STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing. J Exp Med, 2009. 206(7): p. 1465-72.
76. Huber, S., et al., IL-22BP is regulated by the inflammasome and modulates tumorigenesis in the intestine. Nature, 2012. 491(7423): p. 259-63.
77. Gerondakis, S., et al., NF-kappaB control of T cell development. Nat Immunol, 2014. 15(1): p. 15-25.
78. Gugasyan, R., et al., The NF-kappaB1 transcription factor prevents the intrathymic development of CD8 T cells with memory properties. EMBO J, 2012. 31(3): p. 692-706.
79. Gerondakis, S. and U. Siebenlist, Roles of the NF-kappaB pathway in lymphocyte development and function. Cold Spring Harb Perspect Biol, 2010. 2(5): p. a000182.
80. Webster, G.A. and N.D. Perkins, Transcriptional cross talk between NF-kappaB and p53. Mol Cell Biol, 1999. 19(5): p. 3485-95.
81. Morgan, X.C., et al., Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol, 2012. 13(9): p. R79.
82. Laukens, D., et al., Heterogeneity of the gut microbiome in mice: guidelines for optimizing experimental design. FEMS Microbiol Rev, 2016. 40(1): p. 117-32.
83. Sica, A., et al., Interaction of NF-kappaB and NFAT with the interferon-gamma promoter. J Biol Chem, 1997. 272(48): p. 30412-20.
84. Hoyos, B., et al., Kappa B-specific DNA binding proteins: role in the regulation of human interleukin-2 gene expression. Science, 1989. 244(4903): p. 457-60.
85. Hinz, M., et al., Nuclear factor kappaB-dependent gene expression profiling of Hodgkin's disease tumor cells, pathogenetic significance, and link to constitutive signal transducer and activator of transcription 5a activity. J Exp Med, 2002. 196(5): p. 605-17.
86. Shen, F., et al., Identification of common transcriptional regulatory elements in interleukin-17 target genes. J Biol Chem, 2006. 281(34): p. 24138-48.
87. Kullberg, M.C., et al., IL-23 plays a key role in Helicobacter hepaticus-induced T cell-dependent colitis. J Exp Med, 2006. 203(11): p. 2485-94.
88. Hue, S., et al., Interleukin-23 drives innate and T cell-mediated intestinal inflammation. J Exp Med, 2006. 203(11): p. 2473-83.
89. Andoh, A., et al., Interleukin-22, a member of the IL-10 subfamily, induces inflammatory responses in colonic subepithelial myofibroblasts. Gastroenterology, 2005. 129(3): p. 969-84.
90. Rutz, S., et al., Transcription factor c-Maf mediates the TGF-beta-dependent suppression of IL-22 production in T(H)17 cells. Nat Immunol, 2011. 12(12): p. 1238-45.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66992-
dc.description.abstractCREB (cAMP response element-binding protein) 結合蛋白(CBP)是一種轉錄共活化因子,可利用本身的組蛋白乙醯轉移酶(HAT)直接調控轉綠作用的進行,並且與多種蛋白有交互作用。當CBP產生突變在人類會造成魯賓斯坦-泰必氏綜合症(Rubinstein-Taybi syndrome, RTS)。在小鼠的胸腺細胞條件式剔除CBP,會有異常的胸腺發育,而且CD8細胞會表現出作用、記憶與先天性型態,並且在接受刺激後能大量快速產生伽瑪干擾素 (interferon-γ)。先前研究證實,CBP 胺基酸1382與1386位置 (老鼠為胺基酸1383與1387位置) 的絲氨酸會被進入細胞核的IKKα磷酸化而增進 CBP HAT的活性,而在此兩胺基酸位點突變的CBP較傾向與P53結合而不傾向與NF-κB結合。在突變CBP knock-in小鼠 (CBPS1383/1387Am/; AA 小鼠) 中,發現會有自發性腸炎的現象,並且其症狀與人類發炎性腸炎相似。因此我們假設在AA小鼠中,腸道發炎是由於異常的T細胞而造成的。在本研究中,我們證實AA小鼠的胸腺細胞數相對於野生型是較少的,但是在腸系膜淋巴結 (mLNs) 中,不論是CD4或是CD8 T細胞數都是上升的。在脾臟中與野生型相比,AA小鼠初始T細胞是顯著性下降且作用性T細胞是顯著性上升的。而在CD4與CD8 T細胞產生細胞激素的能力方面WT小鼠與AA小鼠是相似的,並且初始T細胞分化為TH1、TH2與TH17的能力也是沒有顯著性差異的。此外發炎型細胞激素與抗菌蛋白在AA小鼠大腸黏液層都是上升的,另外在DSS引起的腸道發炎模式中,AA小鼠的 mLNs 會有較多免疫細胞,並且將AA小鼠與WT小鼠混合飼養後,mLNs中的免疫細胞數目沒有顯著差異。zh_TW
dc.description.abstractCREB (cAMP response element-binding protein) binding protein (CBP) is a transcriptional co-activator. It regulates transcription directly with its intrinsic histone acetyltransferase (HAT) domian. Mutation of CBP in human causes Rubinstein-Taybi syndrome (RTS), an autosomal-dominant disease. Moreover, T cell development in CBP conditional knock-out mice is abnormal. CBP deficient CD8 single-positive (SP) thymocytes possess an effector-, memory-, or innate-like T-cell phenotype and rapidly produce interferon-γ upon stimulation. Previous study indicated that nuclear IKKα phosphorylates CBP at Ser-1382 and Ser-1386 (mouse amino acids 1383 and 1387) and enhance CBP HAT activity. Mutant CBP was shown to switch binding preference from NF-κB to p53. Mutant CBP knock-in mice, CBPS1383/1387Am/m (AA) mice, were generated. They spontaneously develop colitis with features of human inflammatory bowel disease. Because CBP plays a crucial role in T cell development, we hypothesize that abnormal T cells cause chronic intestinal inflammation in the mutated CBP knock-in mice. In this study, the aim is to clarify the role of T cells in intestinal inflammation in AA mice. The results showed that the cell number of thymus was lower in AA mice than WT mice. However, T cells, including CD4 and CD8 T cells, were significantly increased in mesenteric lymph nodes (mLNs) of AA mice. Furthermore, naïve T cells were significantly decreased and effector T cells were significantly increased in AA mice. However, the cytokine-producing ability of T cells was similar in WT and AA mice and the serine phosphorylated CBP did not affect naïve CD4 T cells differentiate into TH1, TH2 and TH17 cells. Moreover, inflammatory cytokines and anti-microbial peptides (AMPs) were enhanced in colon mucus layer of AA mice. AA mice exhibited more immune cells in mLNs compared to WT mice after DSS treatment. In addition, AA mice had similar immune cell population in mLNs to WT mice according to DSS co-house study.en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:16:35Z (GMT). No. of bitstreams: 1
ntu-106-R04449002-1.pdf: 5010979 bytes, checksum: fed9cb50243732c510bab5ddf098810a (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents致謝 i
中文摘要 ii
Abstract iii
Content v
Figure of content viii
I. Introduction 1
1. T cells 1
1.1. CD4 T cells 1
1.1.1. TH1 cells 1
1.1.2. TH2 cells 2
1.1.3. TH17 cells 2
1.2. CD8 T cells 3
2. CREB (cAMP response element-binding protein) binding protein (CBP) 3
2.1. CBP and disease 4
2.2. CBP and T cell 5
2.3. CBP and NF-κB crosslink to immune 6
3. Inflammatory bowel diseases (IBDs) 7
3.1. TH1 cell-associated colitis 7
3.2. TH2 cell-associated colitis 7
3.3. TH17 cell-associated colitis 8
3.4. IL-22 8
4. Significance and Specific aim 9
II. Materials and Methods 11
1. Materials 11
1.1. Mice 11
1.2. Antibodies and cytokines 11
1.3. Buffers 13
1.4. Chemicals and Reagents 14
1.5. Primers 15
2. Methods 18
2.1. Cell sorting 18
2.2. In vitro T cells culture 18
2.2.1. In vitro CD4 T cells culture 18
2.2.2. In vitro CD8 T cells culture 19
2.2.3. In vitro T helper differentiation 20
2.3. Quantitative real-time PCR 21
2.4. ELISA 21
2.5. DSS-induced colitis model 22
III. Result 23
1. Abnormal thymus development in CBPS1383/1387Am/m (AA) mice. 23
2. Population of T cell in spleen, pLNs and mLNs 24
3. Comparable cytokine production by T cell in AA mice and WT mice is comparable. 25
4. An ability of T helper cells differentiated into TH1, TH2 and TH17 cells is comparable between AA and WT mice. 26
5. Elevated inflammatory cytokine and anti-microbial peptides, and normal amount of mucins mRNA transcript in mucus layer of AA mice 27
6. Population of immune cell in mLNs is increased in AA mice compared to WT mice after DSS treatment. 29
7. Comparable immune cell population in mLNs of cohoused AA mice and WT mice after DSS treatment. 31
8. TH17 cell related responses in 8 weeks old AA mice 32
IV. Discussion and conclusion 33
V. Figure 40
VI. References 60
VII. Supplementary 66
dc.language.isoen
dc.subjectCREB結合蛋白zh_TW
dc.subjectT 細胞zh_TW
dc.subject腸炎zh_TW
dc.subjectcolitisen
dc.subjectCBPen
dc.subjectT cellen
dc.subjectIBDen
dc.title在CBPS1383/1387Am/m 小鼠腸道發炎反應之T細胞分析zh_TW
dc.titleProfiling T cells in intestinal inflammation CBPS1383/1387Am/m miceen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee伍安怡,張雅貞,陳青周
dc.subject.keywordCREB結合蛋白,T 細胞,腸炎,zh_TW
dc.subject.keywordCBP,T cell,colitis,IBD,en
dc.relation.page67
dc.identifier.doi10.6342/NTU201702139
dc.rights.note有償授權
dc.date.accepted2017-08-14
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept免疫學研究所zh_TW
顯示於系所單位:免疫學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
4.89 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved