請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66980
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 鄭榮和(Jung-Ho Cheng) | |
dc.contributor.author | Jing-Liang Yang | en |
dc.contributor.author | 楊景喨 | zh_TW |
dc.date.accessioned | 2021-06-17T01:16:16Z | - |
dc.date.available | 2022-08-28 | |
dc.date.copyright | 2017-08-28 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-08-14 | |
dc.identifier.citation | [1] 廖慶復、姜林靜惠, '市售輪胎滾動阻力與濕地抓地力測試研究,' 中華民國第十七屆車輛工程學術研討會, 2012.
[2] 潘國良, '車用輪胎之環保與安全議題漫談,' 財團法人車輛研究測試中心車輛研測資訊雙月刊,vol.70, pp.2-7, 2009. [3] ADAC: Allgemeiner Deutscher Automobil-Club https://www.adac.de/. [4] Gent, A. N. and Walter, J. D., 'The Pneumatic Tire,' The National Highway Traffic Safety Administration, 2005. [5] The Wheel & Tyre Bible http://www.carbibles.com/tyre_bible_pg2.html. [6] Tire Glossary http://importnut.net/tireglossary.htm. [7] Replacement Tire Selection http://autopedia.com/TireSchool/replacement.html. [8] YOKOHAMA橫濱輪胎http://www.yokohamatire.com.tw/. [9] 許靜微, '輪胎的基本認識,' 風火輪雜誌社, vol. 145, pp. 130-137, 1996. [10] 台灣普利司通http://www.bridgestone.com.tw/. [11] Wong, J. Y., Theory of Ground Vehicles, 3rd Edition: John Wiley & Sons, Inc., 2001. [12] Ali, A., Hosseini, M. and Sahari, B. B., 'A Review of Constitutive Models for Rubber-Like Materials,' 2010. [13] Hyperelastic behavior of rubberlike materials, Abaqus Analysis User's Manual. [14] Mooney, M., 'A theory of large elastic deformation,' Journal of Applied Physics, vol. 11, pp. 582-592, Sep 1940. [15] Arruda, E. M. and Boyce, M .C., 'A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials,' Journal of the Mechanics and Physics of Solids, vol. 41, pp. 389-412, 1993. [16] Marlow, R. S., 'A general first-invariant hyperelastic constitutive model,' in Constitutive Models for Rubber III, pp. 157-160, 2003. [17] Mark, J. E., Erman, B. and Eirich, F. R., 'Science and Technology of RUBBER Third Edition: Elsevier Inc,' 2005. [18] Brinke, J. W. T.,'Silica reinforced tyre rubbers: mechanistic aspects of the role of coupling agents,' Enschede, 2002. [19] Time Domain Viscoelasticity, Abaqus Analysis User's Manual. [20] Brinson, H. F. and Brinson, L. C., 'Polymer Engineering Science And Viscoelasticity An Introduction,' 2008. [21] Bergstrom, J. S. and Boyce, M. C., 'Constitutive modeling of the large strain time-dependent behavior of elastomers,' Journal of the Mechanics and Physics of Solids, vol. 46, pp. 931-954, May 1998. [22] Grogger, H. and Weiss, M., 'Calculation of the Hydroplaning of a Deformable Smooth-Shaped and Longitudinally-Grooved Tire,' Tire Science and Technology, TSTCA, Vol. 25, No. 4, October-December, pp. 265-287,1997. [23] 輪胎知識大全 http://www.xcar.com.cn/bbs/viewthread.php?tid=391328. [24] Sillem, A., 'Feasibility study of a tire hydroplaning simulation in a monolithic finite element code using a coupled Eulerian-Lagrangian method,' The Netherlands: Delft University of Technology, 2008. [25] Feasibility Study of Tire Hydroplaning using an Eulerian-Lagrangian approach in a single Finite Element Code http://ta.twi.tudelft.nl/users/vuik/numanal/sillem_eng.html. [26] Horne, W. B. and Dreber, R. C., 'Phenomena of Pneumatic Tire Hydroplaning,' Technical Note D-2056, National Aeronautics and Space Administration, 1963. [27] Agrawal S. K. and Henry J. J., 'Technique for Evaluating Hydroplaning Potential of Pavements,' 1977. [28] Gallaway, B . M., 'Pavement and Geometric Design Criteria for Minimizing Hydroplaning,' 1979. [29] Horne, W. B., 'Predicting the Minimum Dynamic Hydroplaning Speed for Aircraft, Bus, Truck, and Automobile Tires Rolling on Flooded Pavements,' American Society for Testing and Materials E-17 Committee Meeting, College Station, Texas, 1984. [30] 趙珍輝, '輪胎滑水有限元顯式動力學分析,' 中國科學技術大學固體力學碩士論文, 2009. [31] 莊繼德, 現代汽車輪胎技術, 北京理工大學出版社, 2001 [32] Michelin, 'The tyre Grip,' [33] Amino, N. and Uchiyama, Y., 'Relationships Between the Friction and Viscoelastic Properties of Rubber,' Tire Science and Technology: July 2000, Vol. 28, No. 3, pp. 178-195, 2000. [34] Grogger, H. and Weiss, M., ' Calculation of the Three‐Dimensional Free Surface Flow Around an Automobile Tire,' Tire Science and Technology, vol. 24, No.1, pp. 39-49, 1996. [35] Grogger, H. and Weiss, M., 'Calculation of the Hydroplaning of a Deformable Smooth-Shaped and Longitudinally-Grooved Tire,' Tire Science and Technology, TSTCA, Vol. 25, No. 4, October-December, pp. 265-287, 1997. [36] Toshihiko, O. and Masataka, K., 'A New Computational Procedure to Predict. Transient Hydroplaning Performance of a Tire,' Tire Science and Technology, TSTCA, Vol. 29, No. 1, pp. 2-22, 2001. [37] Cho, J. R., Lee, H. W., Sohn, J. S., Kim, G. J. and Woo, J. S., ' Numerical investigation of hydroplaning characteristics of three-dimensional patterned tire ,'European Journal of Mechanics A/Solids, vol.25, pp.914-926, 2006. [38] Oh, C. W., Kim, T. W., Jeong, H. Y., Park, K. S. and Kim, S. N., ' Hydroplaning simulation for a straight-grooved tire by using FDM, FEM and an asymptotic method ,'Journal of Mechanical Science and Technology , vol. 21, pp.524-631, 2007. [39] Wies, B., Roeger, B., and Mundl, R., ' Influence of Pattern Void on Hydroplaning and Related Target Conflicts ,' Tire Science and Technology, vol. 37, pp. 187-206, 2009. [40] ASTM Standard D412-06a, 'Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers—Tension,' ed. West Conshohocken, PA: ASTM International, 2008. [41] MTS 810 & 858 Material Testing Systems http://www.upc.edu/sct/documents_equipament/d_77_id-412.pdf. [42] Time Domain Viscoelasticity, Abaqus Analysis User's Manual. [43] Fernanda, M., Costa, P. and Ribeiro, C., 'Parameter Estimation of Viscoelastic Materials: A Test Case with Different Optimization Strategies, 'AIP Conference Proceedings, vol. 1389, pp. 771-774, 2011. [44] Barbero, E. J., 'Introduction to Composite Materials Design,' CRC Press, 2011. [45] 徐慶瑜、梁卓中、鄧作樑、許朝鈞、蔡品呈、彭凱誠, '水下爆炸引致巨大空蝕區造成船艦結構墜落時之結構動態效應分析,' 2012 SIMULIA Regional User Meeting, 2012. [46] Nonlinear finite elements/Lagrangian and Eulerian descriptions https://en.wikiversity.org/wiki/Nonlinear_finite_elements/Lagrangian_and_Eulerian_descriptions. [47] GB/T 23663-2009 汽車輪胎徑向和橫向剛性試驗方法 [48] 崑山創研科技輪胎剛性試驗機的技術資料http://www.ksworldtek.com/Article/kscykjltgx_1.html. [49] Prescale膠片(俗稱:感壓紙) http://www.ndtinfo.net/hichina1/guowaindtqicai/jpfujifilm/fuji-prescale.htm. [50] 廖慶復、黃敏祥、蘇皋群, '國外輪胎標籤發展現況與檢測方法,' 車輛研測資訊, vol.090, pp.14-20, 2012. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66980 | - |
dc.description.abstract | 為了瞭解輪胎發生水漂現象之原因與排水機制,本研究透過有限元素法軟體Abaqus來計算輪胎加速時之排水性能,參考TÜV MARK之縱向水漂測試規範,針對規格205/55 R16之輻射層輪胎ECO-2+建立模擬水漂現象之水漂模型,計算輪胎的極限水漂速度以此判別排水性能之優劣。經由TÜV MARK的縱向水漂測試結果驗證本研究水漂模型之誤差為4.3%,以此水漂模型探討各種胎紋設計與胎壓對於輪胎排水性能之影響,了解實驗無法觀測的排水機制,釐清不同胎紋之設計原理與功能。為了減少篩選參數所耗費的計算時間,結合計算流體力學軟體FlowVision提出預估排水量之簡化模型,先對新設計進行排水量估算,若估算結果顯示有利於提升排水性能,再透過水漂模型計算提升多少水漂速度,若結果不利於排水則不計算水漂速度,提升篩選胎紋設計的效率。最後針對胎紋設計提出改善方向,作為往後設計上的建議。 | zh_TW |
dc.description.abstract | This study uses finite element analysis to calculate the hydroplaning velocity caused by the process of tire tread moving. Instead of using the traditional trial and error method, this study builds finite element model for the 205/55 R16 91V radial tire by the software Abaqus, to save lots of development time and money, and verify the correctness of the model by the experiment. Next, uses the model to explore the influence of driving conditions and structural design parameters on high drainage performance. To save development time, the study uses a Simple Model to predict mass flow of new design. If Simple Model predictions are in favor of improve mass flow, then the complete tire simulation. Finally, this study proposes the procedure to design tread type, which can access good drainage performance. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T01:16:16Z (GMT). No. of bitstreams: 1 ntu-106-R04522533-1.pdf: 7977323 bytes, checksum: d30458536768ae92b1e561c42cbb40d8 (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 致謝 I
摘要 II ABSTRACT III 目錄 IV 圖目錄 VII 表目錄 XIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 研究流程與方法 4 1.4 使用軟體簡介 6 1.5 論文架構 8 第二章 理論背景與文獻回顧 9 2.1 輪胎結構力學 9 2.1.1輪胎種類及構造 9 2.1.2輪胎規格標示 13 2.1.3輪胎座標軸系統 15 2.2 橡膠材料特性 16 2.2.1超彈性Hyperelastic 16 2.2.2黏彈性Viscoelastic 20 2.3 輪胎排水性能 27 2.3.1水漂現象Hydroplaning 27 2.3.2極限水漂速度測試[23] 29 2.4 輪胎排水性能研究 32 2.4.1極限水漂速度公式 32 2.4.2影響參數探討 33 2.4.3模擬水漂現象之研究 38 2.5 小結 43 第三章 有限元素模型建立與驗證 44 3.1 輪胎幾何建立與模型假設 44 3.2 材料性質 46 3.2.1橡膠Hyperelastic 46 3.2.2橡膠Viscoelastic 47 3.2.3簾布層Ply&環帶層Belt&環帶層固定層Belt Cover 50 3.2.4水 Water 52 3.3 輪胎水漂模型建立與排水性能計算 53 3.3.1輪胎模型設定 53 3.3.2輪胎穩態滾動 56 3.3.3水層流場設定 57 3.3.4水漂分析:計算極限水漂速度 58 3.4 實驗驗證 60 3.4.1徑向與橫向剛性驗證 60 3.4.2水漂模型驗證 64 3.5 小結 68 第四章 輪胎各參數排水性能分析 69 4.1 輪胎排水性能分析 71 4.1.1流場壓力分佈圖(SVAVG, Volume-averaged stress components and invariants) 71 4.1.2流場速度分佈圖 72 4.1.3流場速度向量圖 73 4.1.4排水分析流程 74 4.2 輪胎排水機制 74 4.2.1沒有胎紋時水怎麼流動? 75 4.2.2順著水流動的方向進行排水 76 4.2.3結果分析 76 4.2.4胎紋設計流程 77 4.3 胎紋設計探討 77 4.2.1外側直溝位置 78 4.2.2直溝數量 80 4.2.3內側直溝位置 83 4.2.4橫溝功能 85 4.2.5橫溝連通 86 4.4 輪胎工況:胎壓 88 4.5 小結 89 第五章 預估排水量 92 5.1 水漂模型計算耗時之原因 92 5.2 預估排水量之簡化模型設定 93 5.2.1預估排水量之簡化模型設定 94 5.2.2輸出排水量 95 5.3 預估排水量之簡化模型趨勢驗證 96 5.4 小結 98 第六章 結論與未來方向 99 6.1 結果總結 99 6.2 未來方向 100 參考文獻 101 | |
dc.language.iso | zh-TW | |
dc.title | 輪胎胎紋設計提升排水性能之研究 | zh_TW |
dc.title | Studies of Improved Drainage Performance with Designs of Tire Tread Patterns | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 劉霆(Tyng Liu),單秋成(Chow-Shing Shin) | |
dc.subject.keyword | 輻射胎,水漂現象,有限元素法,排水量,流固耦合, | zh_TW |
dc.subject.keyword | radial tire,hydroplaning,finite element method,mass flow,Fluid-Structure Interaction, | en |
dc.relation.page | 105 | |
dc.identifier.doi | 10.6342/NTU201703050 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-08-14 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 7.79 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。