請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66941
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 崔茂培 | |
dc.contributor.author | Tzu-Mo Kuo | en |
dc.contributor.author | 郭子模 | zh_TW |
dc.date.accessioned | 2021-06-17T01:15:20Z | - |
dc.date.available | 2017-08-25 | |
dc.date.copyright | 2017-08-25 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-08-14 | |
dc.identifier.citation | [1] H. C. Chang. Minimal submanifolds asymptotic to AdS4 S2 in AdS5×S5. 1310.5734 [hep-th].
[2] T. H. Colding and W. P. Minicozzi. A course in minimal surfaces. American Mathematical Soc., 2011. [3] L. C. Evans. Partial di erential equations. American Mathematical Soc., 2010. [4] C. R. Graham and A. Karch. Minimal area submanifolds in AdS×compact. hep-th/1401.7692. [5] C. R. Graham and J. Lee. Einstein metrics with prescribed conformal in nity on the ball. Adv. Math. 87(1991), 186-225. [6] J. Maldacena. Wilson loops in large N eld theories. hep-th/9803002. [7] J. Simons. Minimal subvariety in riemannian manifolds. Annals of Mathematics Second Series, Vol. 88, No. 1 (Jul., 1968), pp. 62-105. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66941 | - |
dc.description.abstract | 這篇論文主要在理解極小流形靠近邊界的行為,此極小流形是在AdS積空間底下的子流形且在特殊的座標選取下可表示成函數圖形的樣子。從一個特例出發,我們嘗試了解Graham和Karch得出的結果。次外,從Han-Chih Chang的數值圖形可觀察到U形膜有一個極值點,我們證明了確實只有一個極值點。 | zh_TW |
dc.description.abstract | This thesis focuses on understanding the behavior of a minimal submanifold near boundary where such a minimal submanifold, Z, is in a product space of AdS with a particular coordinate patch such that Z can be described in a special graphic form. Begin from a particular example, we try to know the result derived from Graham and Karch. Besides, there is a critical point in U-shaped brane according to the numerical graph from Han-Chih Chang. We prove that there is only one critical point. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T01:15:20Z (GMT). No. of bitstreams: 1 ntu-106-R04221014-1.pdf: 964641 bytes, checksum: 1d6035fe21b90482f61b9fbfeaf0548f (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 口試委員會審定書.................................................#
誌謝.............................................................i 中文摘要........................................................ii ABSTRACT.......................................................iii CONTENTS........................................................iv Chapter 1 Introduction.....................................1 Chapter 2 Preliminary......................................3 2.1 Notation...........................................3 2.2 The first and second variation formulas............3 2.3 Linearization of mean curvature vector.............4 2.4 Conformal compact Einstein manifold................5 Chapter 3 Behavior of Product Submanifold Near Boundary....8 Chapter 4 Examples of Graphical Minimal Submanifold.......13 4.1 Minimal submanifold in AdS_5×S^5..................13 4.2 U-shaped brane....................................15 Bibliography....................................................17 | |
dc.language.iso | en | |
dc.title | 極小流形在反德西特空間的積空間之幾何研究 | zh_TW |
dc.title | Survey on the Geometry of Minimal Submanifold in Product Space of Anti-de Sitter Space | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 張樹城,王業凱,蔡忠潤 | |
dc.subject.keyword | 極小流形,AdS,U形膜,極值點, | zh_TW |
dc.subject.keyword | minimal submanifold,AdS,U-shaped brane,critical point, | en |
dc.relation.page | 17 | |
dc.identifier.doi | 10.6342/NTU201703119 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-08-15 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 數學研究所 | zh_TW |
顯示於系所單位: | 數學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 942.03 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。