請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66940完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳基旺 | |
| dc.contributor.author | I-Chun Lin | en |
| dc.contributor.author | 林怡君 | zh_TW |
| dc.date.accessioned | 2021-06-17T01:15:19Z | - |
| dc.date.available | 2022-09-14 | |
| dc.date.copyright | 2017-09-14 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-14 | |
| dc.identifier.citation | 1. Fu, R.G.; Sun, Y.; Sheng, W.B.; Liao, D.F., Designing Multi-Targeted Agents: An Emerging Anticancer Drug Discovery Paradigm. Eur. J. Med. Chem. 2017, 136, 195-211.
2. Stratikopoulos, Elias, E.; Dendy, M.; Szabolcs, M.; Khaykin, Alan J.; Lefebvre, C.; Zhou, M.-M.; Parsons, R., Kinase and BET Inhibitors Together Clamp Inhibition of PI3K Signaling and Overcome Resistance to Therapy. Cancer. Cell. 2015, 27 (6), 837-851. 3. Guan, Z.; Xu, B.; DeSilvio, M. L.; Shen, Z.; Arpornwirat, W.; Tong, Z.; Lorvidhaya, V.; Jiang, Z.; Yang, J.; Makhson, A.; Leung, W. L.; Russo, M. W.; Newstat, B.; Wang, L.; Chen, G.; Oliva, C.; Gomez, H., Randomized Trial of Lapatinib Versus Placebo Added to Paclitaxel in the Treatment of Human Epidermal Growth Factor Receptor 2–Overexpressing Metastatic Breast Cancer. J. Clin. Oncol. 2013, 31 (16), 1947-1953. 4. Bayat Mokhtari, R.; Homayouni, T. S.; Baluch, N.; Morgatskaya, E.; Kumar, S.; Das, B.; Yeger, H., Combination Therapy in Combating Cancer. Oncotarget. 2017, 8 (23), 38022-38043 5. Covell, L. L.; Ganti, A. K., Treatment of Advanced Thyroid Cancer: Role of Molecularly Targeted Therapies. Target. Oncol. 2015, 10 (3), 311-324. 6. Laura, G.; Marinella, R.; Giovanni, B., Multi-Kinase Inhibitors. Curr. Med. Chem. 2015, 22 (6), 695-712. 7. Cai, X.; Zhai, H.X.; Wang, J.; Forrester, J.; Qu, H.; Yin, L.; Lai, C.J.; Bao, R.; Qian, C., Discovery of 7-(4-(3-Ethynylphenylamino)-7-methoxyquinazolin-6-yloxy)-N-hydroxyheptanamide (CUDC-101) as a Potent Multi-Acting HDAC, EGFR, and HER2 Inhibitor for the Treatment of Cancer. J. Med. Chem. 2010, 53 (5), 2000-2009. 8. Qian, C.; Lai, C.J.; Bao, R.; Wang, D.G.; Wang, J.; Xu, G.X.; Atoyan, R.; Qu, H.; Yin, L.; Samson, M.; Zifcak, B.; Ma, A. W. S.; DellaRocca, S.; Borek, M.; Zhai, H.X.; Cai, X.; Voi, M., Cancer Network Disruption by a Single Molecule Inhibitor Targeting Both Histone Deacetylase Activity and Phosphatidylinositol 3-Kinase Signaling. Clin. Cancer. Res. 2012, 18 (15), 4104. 9. Yang, E. G.; Mustafa, N.; Tan, E. C.; Poulsen, A.; Ramanujulu, P. M.; Chng, W. J.; Yen, J. J. Y.; Dymock, B. W., Design and Synthesis of Janus Kinase 2 (JAK2) and Histone Deacetlyase (HDAC) Bispecific Inhibitors Based on Pacritinib and Evidence of Dual Pathway Inhibition in Hematological Cell Lines. J. Med. Chem. 2016, 59 (18), 8233-8262. 10. Glaser, K. B.; Li, J.; Staver, M. J.; Wei, R.Q.; Albert, D. H.; Davidsen, S. K., Role of Class I and Class II Histone Deacetylases in Carcinoma Cells Using siRNA. Biochem. Biophys. Res. Commun. 2003, 310 (2), 529-536. 11. Kim, H.J.; Bae, S.C., Histone Deacetylase Inhibitors: Molecular Mechanisms of Action and Clinical Trials as Anti-Cancer Drugs. Am. J. Transl. Res. 2011, 3 (2), 166-179. 12. Krämer, O. H.; Knauer, S. K.; Greiner, G.; Jandt, E.; Reichardt, S.; Gührs, K.H.; Stauber, R. H.; Böhmer, F. D.; Heinzel, T., A Phosphorylation-Acetylation Switch Regulates STAT1 Signaling. Genes. Dev. 2009, 23 (2), 223-235. 13. Glozak, M. A.; Seto, E., Histone Deacetylases and Cancer. Oncogene. 2007, 26 (37), 5420-5432. 14. Yan, B.; Liu, Y.; Bai, H.; Chen, M.; Xie, S.; Li, D.; Liu, M.; Zhou, J., HDAC6 Regulates IL-17 Expression in T Lymphocytes: Implications for HDAC6-Targeted Therapies. Theranostics. 2017, 7 (4), 1002-1009. 15. Solomon, B.; Wilner, K. D.; Shaw, A. T., Current Status of Targeted Therapy for Anaplastic Lymphoma Kinase–Rearranged Non–Small Cell Lung Cancer. Clin. Pharmacol. Ther. 2014, 95 (1), 15-23. 16. Roskoski, R., Anaplastic Lymphoma kinase (ALK): Structure, Oncogenic Activation, and Pharmacological Inhibition. Pharmacol. Res. 2013, 68 (1), 68-94. 17. Shaw, A. T.; Yeap, B. Y.; Mino-Kenudson, M.; Digumarthy, S. R.; Costa, D. B.; Heist, R. S.; Solomon, B.; Stubbs, H.; Admane, S.; McDermott, U.; Settleman, J.; Kobayashi, S.; Mark, E. J.; Rodig, S. J.; Chirieac, L. R.; Kwak, E. L.; Lynch, T. J.; Iafrate, A. J., Clinical Features and Outcome of Patients With Non–Small-Cell Lung Cancer Who Harbor EML4-ALK. J. Clin. Oncol. 2009, 27 (26), 4247-4253. 18. Wu, J.; Savooji, J.; Liu, D., Second- and Third-Generation ALK Inhibitors for Non-Small Cell Lung Cancer. J. Hematol. Oncol. 2016, 9, 19. 19. Lewis, R. T.; Bode, C. M.; Choquette, D. M.; Potashman, M.; Romero, K.; Stellwagen, J. C.; Teffera, Y.; Moore, E.; Whittington, D. A.; Chen, H.; Epstein, L. F.; Emkey, R.; Andrews, P. S.; Yu, V. L.; Saffran, D. C.; Xu, M.; Drew, A.; Merkel, P.; Szilvassy, S.; Brake, R. L., The Discovery and Optimization of a Novel Class of Potent, Selective, and Orally Bioavailable Anaplastic Lymphoma Kinase (ALK) Inhibitors with Potential Utility for the Treatment of Cancer. J. Med. Chem. 2012, 55 (14), 6523-6540. 20. Teffera, Y.; Berry, L. M.; Brake, R. L.; Lewis, R. T.; Saffran, D. C.; Moore, E.; Liu, J.; Zhao, Z., Impact of Hydrolysis-Mediated Clearance on the Pharmacokinetics of Novel Anaplastic Lymphoma Kinase Inhibitors. Drug. Metab. Dispos. 2012, 41 (1), 238. 21. Gediya, L. K.; Chopra, P.; Purushottamachar, P.; Maheshwari, N.; Njar, V. C. O., A New Simple and High-Yield Synthesis of Suberoylanilide Hydroxamic Acid and Its Inhibitory Effect Alone or in Combination with Retinoids on Proliferation of Human Prostate Cancer Cells. J. Med. Chem. 2005, 48 (15), 5047-5051. 22. Iizuka, K.; Akahane, K.; Momose, D.; Nakazawa, M.; Tanouchi, T.; Kawamura, M.; Ohyama, I.; Kajiwara, I.; Iguchi, Y., Highly Selective Inhibitors of Thromboxane Synthetase. 1. Imidazole Derivatives. J. Med. Chem. 1981, 24 (10), 1139-1148. 23. Da Settimo, A.; Primofiore, G.; Da Settimo, F.; Calzolari, L.; Cazzulani, P.; Passoni, A.; Tofanetti, O., 1-substituted 2-benzylaminobenzimidazole derivatives: compounds with H1-antihistaminic activity. Eur. J. Med. Chem. 1992, 27 (4), 395-400. 24. Wang, H.; Yu, N.; Chen, D.; Lee, K. C. L.; Lye, P. L.; Chang, J. W. W.; Deng, W.; Ng, M. C. Y.; Lu, T.; Khoo, M. L.; Poulsen, A.; Sangthongpitag, K.; Wu, X.; Hu, C.; Goh, K. C.; Wang, X.; Fang, L.; Goh, K. L.; Khng, H. H.; Goh, S. K.; Yeo, P.; Liu, X.; Bonday, Z.; Wood, J. M.; Dymock, B. W.; Kantharaj, E.; Sun, E. T., Discovery of (2E)-3-{2-Butyl-1-[2-(diethylamino)ethyl]-1H-benzimidazol-5-yl}-N-hydroxyacrylamide (SB939), an Orally Active Histone Deacetylase Inhibitor with a Superior Preclinical Profile. J. Med. Chem. 2011, 54 (13), 4694-4720. 25. Garcia-Manero, G.; Montalban-Bravo, G.; Berdeja, J. G.; Abaza, Y.; Jabbour, E.; Essell, J.; Lyons, R. M.; Ravandi, F.; Maris, M.; Heller, B.; DeZern, A. E.; Babu, S.; Wright, D.; Anz, B.; Boccia, R.; Komrokji, R. S.; Kuriakose, P.; Reeves, J.; Sekeres, M. A.; Kantarjian, H. M.; Ghalie, R.; Roboz, G. J., Phase 2, Randomized, Double-Blind Study of Pracinostat in Combination with Azacitidine in Patients with Untreated, Higher-Risk Myelodysplastic Syndromes. Cancer. 2017, 123 (6), 994-1002. 26. Butler, K. V.; Kalin, J.; Brochier, C.; Vistoli, G.; Langley, B.; Kozikowski, A. P., Rational Design and Simple Chemistry Yield a Superior, Neuroprotective HDAC6 Inhibitor, Tubastatin A. J. Am. Chem. Soc. 2010, 132 (31), 10842-10846 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66940 | - |
| dc.description.abstract | 近年來認為對於像癌症這類的多基因疾病,使用多標靶治療會優於單一標靶治療,並且單一藥物可以避免組合治療所產生的限制。本研究的目的即是設計並合成ALK / HDAC雙重抑制劑作為多標靶抗癌藥物。
目標化合物的設計理念為結合兩個不同的藥效基團使之具有雙重活性。化合物21被選作先導化合物,以不同的連接鏈連接鋅結合基團做結構活性探討。結果顯示2-醯胺基苯并咪唑衍生物皆有ALK抑制活性。其中化合物52具有良好的ALK和HDAC6抑制活性,可作為ALK / HDAC雙重抑制劑。另外,將2-醯胺基苯并咪唑換成苯并咪唑會失去ALK抑制活性,卻有較佳的HDAC抑制活性,此核心結構可做為HDAC抑制劑發展。然而此系列之化合物溶解度差。細胞試驗中的活性弱可能是通透性與類藥性差所導致。在第二章,利用苯并咪唑核心結構接上嗎福林側鏈以提高水溶性。雖然這一類化合物之溶解度有所改善,卻還是低於0.01 mg/mL,並在細胞毒殺試驗中依舊無活性。化合物在酵素活性與細胞毒殺效果上的結果並無關聯性,這可能是因為類藥性差所致。這些問題在未來皆需要再被釐清。 | zh_TW |
| dc.description.abstract | It is generally accepted that multi-therapeutics may be better than mono-therapies for multigenic diseases such as cancer; besides, single agent can avoid the limitation caused by a combination regimen. The aim of this study is to design and to synthesize ALK / HDAC dual inhibitors as novel multi-targeted anti-cancer agents.
The concept of compound design is merging two diverse pharmacophores to obtain one molecule with dual activities. Compound 21 is selected as a lead coupled to different linker connecting with zine binding group for the structure activity relationship (SAR) study. The results show that the 2-acyliminobenzimidazole derivatives all have ALK inhibition. Compound 52 illustrating both ALK and selective HDAC6 inhibitory activity may be considered as ALK / HDAC dual inhibitor. On the other hand, compounds replacing 2-acyliminobenzimidazole with 2-substituted benzimidazole lose ALK inhibition, but with better HDAC inhibition. This core structure can be used to developed as the HDAC inhibitors. However, this series of compounds have poor water solubility. The weak activity in cellular assays may be due to poor permeability and drug-like properties. In Chapter 2, benzimidazole core structure is coupled to morpholine side chain in order to improve the water solubility. Although the solubility has been improved, it is still lower than 0.01mg/mL. The cytotoxic assays did not show activity. There is no correlation between enzymatic inhibitory activity and antiproliferation. This is probably due to the poor drug-like properties. This issue still need to be further clarified. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T01:15:19Z (GMT). No. of bitstreams: 1 ntu-106-R04423005-1.pdf: 6384029 bytes, checksum: e0d020f2bd0741b4c52d3bf729a2a069 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 摘要.....i
Abstract.....ii 目錄.....iii 圖目錄.....v 表目錄.....vi 化學式目錄.....vii 第一章 苯并咪唑衍生物作為間變性淋巴瘤激酶/組蛋白去乙醯酶雙重抑制劑之設計與合成.....1 1-1緒論.....1 1-1-1 多標靶藥物.....1 1-1-2 組蛋白去乙醯酶.....5 1-1-3 間變性淋巴瘤激酶.....8 1-2 藥物設計.....10 1-3 實驗結果與討論.....12 1-3-1 合成.....12 1-3-2 生物活性評估.....21 1-4 總結.....27 1-5 實驗部分.....28 第二章 苯并咪唑衍生物作為組蛋白去乙醯酶抑制劑並改善水溶性之設計與合成.....56 2-1 緒論.....56 2-2 藥物設計.....57 2-3 實驗結果與討論.....58 2-3-1 合成.....58 2-3-2 生物活性評估.....61 2-4 總結.....63 2-5 實驗部分.....64 第三章 結論.....73 參考資料.....74 附錄.....I | |
| dc.language.iso | zh-TW | |
| dc.subject | 抗癌藥物 | zh_TW |
| dc.subject | 雙效抑制劑 | zh_TW |
| dc.subject | 苯並咪唑 | zh_TW |
| dc.subject | 水溶性 | zh_TW |
| dc.subject | 類藥性 | zh_TW |
| dc.subject | Water solubility | en |
| dc.subject | Dual inhibitors | en |
| dc.subject | Benzimidazole | en |
| dc.subject | Drug-like properties | en |
| dc.subject | Anti-cancer agents | en |
| dc.title | 苯并咪唑衍生物作為間變性淋巴瘤激酶/組蛋白去乙醯酶雙重抑製劑之設計與合成 | zh_TW |
| dc.title | Design and Synthesis of Benzimidazole Derivatives as Anaplastic Lymphoma Kinase / Histone Deacetylase Dual Inhibitors | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王光昭,忻凌偉,梁碧惠,陳香惠 | |
| dc.subject.keyword | 抗癌藥物,雙效抑制劑,苯並咪唑,水溶性,類藥性, | zh_TW |
| dc.subject.keyword | Anti-cancer agents,Dual inhibitors,Benzimidazole,Water solubility,Drug-like properties, | en |
| dc.relation.page | 107 | |
| dc.identifier.doi | 10.6342/NTU201703229 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-08-15 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥學研究所 | zh_TW |
| 顯示於系所單位: | 藥學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 6.23 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
