請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66927
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳永芳(Yang-Fang Chen) | |
dc.contributor.author | Yu-Wei Chu | en |
dc.contributor.author | 朱郁韋 | zh_TW |
dc.date.accessioned | 2021-06-17T01:15:00Z | - |
dc.date.available | 2022-08-25 | |
dc.date.copyright | 2017-08-25 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-08-14 | |
dc.identifier.citation | 1 Wang, J., Shahidehpour, M. and Li, Z. (2008). Security-constrained unit commitment with volatile wind power generation. IEEE Transactions on Power Systems 23, 1319-1327.
2 Datta, R. and Ranganathan, V. (2002). Variable-speed wind power generation using doubly fed wound rotor induction machine-a comparison with alternative schemes. IEEE Transactions on Energy Conversion 17, 414-421. 3 Kiho, S., Shiono, M. and Suzuki, K. (1996). The power generation from tidal currents by Darrieus turbine. Renewable Energy 9, 1242-1245. 4 Shiono, M., Suzuki, K. and Kiho, S. (2000). An experimental study of the characteristics of a Darrieus turbine for tidal power generation. Electrical Engineering in Japan 132, 38-47. 5 Brown, L. C., Besenbruch, G. E., Lentsch, R., Schultz, K. R., Funk, J., Pickard, P., Marshall, A. and Showalter, S. (2003). High efficiency generation of hydrogen fuels using nuclear power. General Atomics Report GA-A24285, Q4. 6 Cowan, R. (1990). Nuclear power reactors: a study in technological lock-in. The Journal of Economic History 50, 541-567. 7 Green, M. A., Emery, K., Hishikawa, Y., Warta, W. and Dunlop, E. D. (2015) Solar cell efficiency tables (Version 45). Progress in Photovoltaics: Research and Applications 23, 1-9. 8 Green, M. A. (2009). The path to 25% silicon solar cell efficiency: history of silicon cell evolution. Progress in Photovoltaics: Research and Applications 17, 183-189. 9 Blakers, A. W., Wang, A., Milne, A. M., Zhao, J. and Green, M. A. (1989). 22.8% efficient silicon solar cell. Applied Physics Letters 55, 1363-1365. 10 Ren, S., Chang, L.-Y., Lim, S.-K., Zhao, J., Smith, M., Zhao, N., Bulović, V., Bawendi, M. and Gradečak, S. (2011). Inorganic–organic hybrid solar cell: bridging quantum dots to conjugated polymer nanowires. Nano Letters 11, 3998-4002. 11 Leventis, H. C., King, S. P., Sudlow, A., Hill, M. S., Molloy, K. C. and Haque, S. A. (2010). Nanostructured hybrid polymer− inorganic solar cell active layers formed by controllable in situ growth of semiconducting sulfide networks. Nano Letters 10, 1253-1258. 12 Grätzel, M. (2003). Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 4, 145-153. 13 Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L. and Pettersson, H. (2010) Dye-sensitized solar cells. Chemical Reviews 110, 6595-6663. 14 Cheng, Y.-J., Yang, S.-H. and Hsu, C.-S. (2009). Synthesis of conjugated polymers for organic solar cell applications. Chemical Reviews 109, 5868-5923. 15 Hiramoto, M., Fujiwara, H. & Yokoyama, M. (1991). Three‐layered organic solar cell with a photoactive interlayer of codeposited pigments. Applied Physics Letters 58, 1062-1064. 16 Krebs, F. C., Tromholt, T. and Jørgensen, M. (2010). Upscaling of polymer solar cell fabrication using full roll-to-roll processing. Nanoscale 2, 873-886. 17 Krebs, F. C., Fyenbo, J. and Jørgensen, M. (2010). Product integration of compact roll-to-roll processed polymer solar cell modules: methods and manufacture using flexographic printing, slot-die coating and rotary screen printing. Journal of Materials Chemistry 20, 8994-9001. 18 Koutroulis, E., Kalaitzakis, K. and Voulgaris, N. C. (2001). Development of a microcontroller-based, photovoltaic maximum power point tracking control system. IEEE Transactions on Power Electronics 16, 46-54. 19 Vak, D., Kim, S.-S., Jo, J., Oh, S.-H., Na, S.-I., Kim, J. and Kim, D.-Y. (2007). Fabrication of organic bulk heterojunction solar cells by a spray deposition method for low-cost power generation. Applied Physics Letters 91, 081-102. 20 Chou, W.-Y., Hsu, F.-C. and Chen, Y.-F. (2017). Fully solution-processed, transparent organic power-generating polarizer. Smart Materials and Structures 26, 035-068. 21 Liu, Y., Zhao, J., Li, Z., Mu, C., Ma, W., Hu, H., Jiang, K., Lin, H., Ade, H. and Yan, H. (2014). Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nature Communications 5, 293-300. 22 Ko, C. J., Lin, Y. K. and Chen, F. C. (2007). Microwave annealing of polymer photovoltaic devices. Advanced Materials 19, 3520-3523. 23 Park, S. H., Roy, A., Beaupré, S., Cho, S., Coates, N., Moon, J. S., Moses, D., Leclerc, M., Lee, K. and Heeger, A. J. (2009). Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nature Photonics 3, 297-302. 24 Wang, Y., Luo, Q., Wu, N., Wang, Q., Zhu, H., Chen, L., Li, Y.-Q., Luo, L. and Ma, C.-Q. (2015). Solution-processed MoO3: PEDOT: PSS hybrid hole transporting layer for inverted polymer solar cells. ACS Applied Materials & Interfaces 7, 7170-7179. 25 Choi, D. Y., Kang, H. W., Sung, H. J. and Kim, S. S. (2013). Annealing-free, flexible silver nanowire–polymer composite electrodes via a continuous two-step spray-coating method. Nanoscale 5, 977-983. 26 Yang, L., Zhang, T., Zhou, H., Price, S. C., Wiley, B. J. and You, W. (2011). Solution-processed flexible polymer solar cells with silver nanowire electrodes. ACS Applied Materials & Interfaces 3, 4075-4084. 27 Kaltenbrunner, M., White, M. S., Głowacki, E. D., Sekitani, T., Someya, T., Sariciftci, N. S. and Bauer, S. (2012). Ultrathin and lightweight organic solar cells with high flexibility. Nature Communications 3, 770-776. 28 https://en.wikipedia.org/wiki/Air_mass_(solar_energy). 29 https://commons.wikimedia.org/wiki/File:Solar_Spectrum.png. 30 http://www.greenrhinoenergy.com/solar/radiation/spectra.php. 31 Moliton, A. and Nunzi, J. M. (2006). How to model the behaviour of organic photovoltaic cells. Polymer International 55, 583-600. 32 https://www.ricoh.com/technology/tech/066_dssc.html. 33 Banerji, A., Tausch, M. W. and Scherf, U. (2013). Classroom experiments and teaching materials on OLEDs with semiconducting polymers. Educación Química 24, 17-22. 34 Marci, G., Augugliaro, V., López-Muñoz, M. J., Martín, C., Palmisano, L., Rives, V., Schiavello, M., Tilley, R. J. and Venezia, A. M. (2001). Preparation characterization and photocatalytic activity of polycrystalline ZnO/TiO2 systems. 2. surface, bulk characterization, and 4-nitrophenol photodegradation in liquid− solid regime. The Journal of Physical Chemistry B 105, 1033-1040. 35 Lim, F. J., Ananthanarayanan, K., Luther, J. and Ho, G. W. (2012). Influence of a novel fluorosurfactant modified PEDOT: PSS hole transport layer on the performance of inverted organic solar cells. Journal of Materials Chemistry 22, 25057-25064. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66927 | - |
dc.description.abstract | 成本效益在大規模生產時一直是我們關切的議題。為了解決這個問題,我們設計了一個輕便、全溶液製程的高效率太陽能電池。選擇常用的ITO作為底電極,然後依次使用旋轉塗佈法完成電子傳輸層,主動層和電洞傳輸層;最後,經由旋轉塗佈一層銀奈米線作為頂部電極以完成元件 藉由材料與製程方法的選擇,我們設計的元件仍然可以與傳統製程法的太陽能電池相比。另外,為了開發下一代的電子和光電元件,我們的電池也可以使用柔性和彈性材料作為基板。 | zh_TW |
dc.description.abstract | Cost-effective is one of the primarily concerns when it comes to mass production. We design a facile, all solution-processed solar cell structure with high performance to address this issue. Commonly used ITO is selected as the bottom electrode followed by spin-coating electron transport, photoactive, and hole transport layers in order; finally, a layer of silver nanowires is also deposited by spin-coating as the top electrode to complete the device. Depending on the photoactive materials and the fabrication methods chosen, the performance of the designed device is comparable to the traditional ones using thermal deposition. Additionally, the designed device can also be carried out on flexible substrates for developing next generation electronic and opto-electronic devices. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T01:15:00Z (GMT). No. of bitstreams: 1 ntu-106-R04245010-1.pdf: 2582391 bytes, checksum: 417d99535b289353250eb2df76f4f930 (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 口試委員審定書 I
致謝 II 中文摘要 IV ABSTRACT V Contents VI Chapter 1 Introduction 1 Chapater2 Theoretical background 5 2.1 Solar Spectrum 5 2.2 Photovoltaic effect 7 2.3 Short circuit current (Isc) 9 2.4 Open Circuit Voltage (Voc) 10 2.5 Fill factor (FF) and Efficiency (η) 11 2.6 Organic Semiconductor 12 Chapter 3 Equipment and Experimental Details 14 3.1 Equipment 14 3.1.1 Scanning election microscopy (SEM) 14 3.1.2 Solar simulator 16 3.1.3 Incident Photo-to-Current Efficiency (IPCE) 17 3.1.4 Thermal evaporation 18 3.1.5 Oxygen Plasma Cleaner 19 3.1.6 Atomic Force Microscopy (AFM) 20 3.2 Experimental Details 22 3.2.1 Materials 22 3.2.1.1 ZnO nanoparticles 23 3.2.1.2 P3HT 24 3.2.1.3 PCBM 24 3.2.1.4 PEDOT: PSS 25 3.2.1.5 Silver nanowire 26 3.2.2 Material preparation 26 3.2.2.1 Synthesis of ZnO nanoparticle 26 3.2.3 Device Fabrication 27 3.2.3.1 Preparation of ITO glass and ITO PET 27 3.2.3.2 Preparation of ZnO nanoparticle film 28 3.2.3.3 Preparation of active layer 28 3.2.3.4 Preparation of hole transparent layer 29 3.2.3.5 Preparation of electrode 29 Chapter 4 Results Discussion 30 Chapter 5 Conclusion and Future Work 50 Reference 51 | |
dc.language.iso | en | |
dc.title | 藉由全溶液製程之可撓式/高效率/雙面照光有機太陽能電池 | zh_TW |
dc.title | All Solution Processed, Flexible, High- Performance, and Bifacial Organic Solar Cells | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林泰源(Tai-Yuan Lin),許芳琪(Fang-Chi Hsu) | |
dc.subject.keyword | 全溶液製程,有機聚合物,可撓式基板,有機太陽能電池, | zh_TW |
dc.subject.keyword | All solution process,Polymer,Flexible substrate,Organic photovoltaic, | en |
dc.relation.page | 56 | |
dc.identifier.doi | 10.6342/NTU201703297 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-08-15 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 應用物理研究所 | zh_TW |
顯示於系所單位: | 應用物理研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 2.52 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。