請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66912完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鍾添東 | |
| dc.contributor.author | Cheng-Kai Yuan | en |
| dc.contributor.author | 袁承楷 | zh_TW |
| dc.date.accessioned | 2021-06-17T01:14:43Z | - |
| dc.date.available | 2018-04-18 | |
| dc.date.copyright | 2018-04-18 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-14 | |
| dc.identifier.citation | [1] E. Hnatkova, P. Kratky, and Z. Dvorak, 'Conversion of 2D medical scan data into 3D printed models,' presented at the 2014 International Conference on Chemistry and Chemical Engineering, Greece, 2014.
[2] A. Dawood, B. M. Marti, V. Sauret-Jackson, and A. Darwood, '3D printing in dentistry,' Br Dent J, vol. 219, pp. 521-529, 12/11/print 2015. [3] H. P. K. KIM, '3-D shape reconstruction from 2-D cross-sections,' Journal of design and manufacturing, vol. 5, pp. 171-185, 1995. [4] W. Sun and P. Lal, 'Recent development on computer aided tissue engineering — a review,' Computer Methods and Programs in Biomedicine, vol. 67, pp. 85-103, 2002/02/01/ 2002. [5] M. Pauly, R. Keiser, L. P. Kobbelt, and M. Gross, 'Shape modeling with point-sampled geometry,' ACM Trans. Graph., vol. 22, pp. 641-650, 2003. [6] W. Sun, B. Starly, J. Nam, and A. Darling, 'Bio-CAD modeling and its applications in computer-aided tissue engineering,' Computer-Aided Design, vol. 37, pp. 1097-1114, 9/15/ 2005. [7] F. Rengier et al., '3D printing based on imaging data: review of medical applications,' International Journal of Computer Assisted Radiology and Surgery, vol. 5, pp. 335-341, 2010. [8] T. J. Hinton et al., 'Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels,' Science Advances, vol. 1, 2015. [9] D. Roller, 'Advanced Methods for Parametric Design,' in Geometric Modeling: Methods and Applications, H. Hagen and D. Roller, Eds., ed Berlin, Heidelberg: Springer Berlin Heidelberg, 1991, pp. 251-266. [10] J. Y. Lee and K. Kim, 'Geometric reasoning for knowledge-based parametric design using graph representation,' Computer-Aided Design, vol. 28, pp. 831-841, 1996/10/01 1996. [11] F. Auricchio, M. Conti, C. Ferrazzano, and G. A. Sgueglia, 'A simple framework to generate 3D patient-specific model of coronary artery bifurcation from single-plane angiographic images,' Computers in Biology and Medicine, vol. 44, pp. 97-109, 2013. [12] J.-D. Boissonnat and P. Memari, 'Shape reconstruction from unorganized cross-sections,' in Symposium on Geometry Processing, 2007, pp. 89-98. [13] F. Cavas-Martínez et al., 'Geometrical Custom Modeling of Human Cornea In Vivo and Its Use for the Diagnosis of Corneal Ectasia,' PLoS ONE, vol. 9, p. e110249, 2014. [14] B. M. Koeppen and B. A. Stanton, Berne & Levy Physiology, Updated Edition: Mosby, 1945. [15] A. R. ZEINA, J. BLINDER, D. SHARIF, U. ROSENSCHEIN, and E. BARMEIR, 'Congenital coronary artery anomalies in adults: non-invasive assessment with multidetector CT,' The British Journal of Radiology, vol. 82, pp. 254-261, 2009. [16] W. H. Leung, M. L. Stadius, and E. L. Alderman, 'Determinants of normal coronary artery dimensions in humans,' Circulation, vol. 84, pp. 2294-306, Dec 1991. [17] I. Ilayperuma, B. G. Nanayakkara, and K. N. Palahepitiya, 'Sexual Differences in the Diameter of Coronary Arteries in an Adult Sri Lankan Population,' Diferencias Sexuales en el Diámetro de las Arterias Coronarias en una Población Adulta de Sri Lanka., vol. 29, pp. 1444-1448, 2011. [18] E. Burdett and V. Mitchell, 'Anatomy of the larynx, trachea and bronchi,' Anaesthesia & Intensive Care Medicine, vol. 12, pp. 335-339, 8// 2011. [19] I. S. Kim, J. M. Lim, O. H. Chai, E.-H. Han, H. T. Kim, and C. H. Song, 'Morphometric Study of the Trachea in Korean,' Korean J Phys Anthropol, vol. 28, pp. 185-195, 12/ 2015. [20] A. Diwakar et al., 'Sonographic evidence of abnormal tracheal cartilage ring structure in cystic fibrosis,' The Laryngoscope, vol. 125, pp. 2398-2404, 2015. [21] K. Boyd. 'Corneal Transplantation,' 2012, https://www.aao.org/eye-health/treatments/about-corneal-transplantation. [22] S. Mergler et al., 'Temperature-Sensitive Transient Receptor Potential Channels in Corneal Tissue Layers and Cells,' Ophthalmic Research, vol. 52, pp. 151-159, 2014. [23] K. Y. Chan, S. W. Cheung, A. K. C. Lam, and P. Cho, 'Corneal Sublayer Thickness Measurements with The Nidek ConfoScan 4 (Z Ring),' Optometry and Vision Science, vol. 88, pp. E1240-E1244, 2011. [24] D. Alberto and R. Garello, 'Corneal Sublayers Thickness Estimation Obtained by High-Resolution FD-OCT,' International Journal of Biomedical Imaging, vol. 2013, p. 7, 2013. [25] D. H. Johnson, W. M. Bourne, and R. Campbell, 'The ultrastructure of descemet's membrane: I. changes with age in normal corneas,' Archives of Ophthalmology, vol. 100, pp. 1942-1947, 1982. [26] P. M. Kiely, G. Smith, and L. G. Carney, 'The Mean Shape of the Human Cornea,' Optica Acta: International Journal of Optics, vol. 29, pp. 1027-1040, 1982/08/01 1982. [27] P. M. KIELY, G. SMITH, and L. G. CARNEY, 'Meridional Variations of Corneal Shape,' Optometry & Vision Science, vol. 61, pp. 619-626, 1984. [28] C. Pruss, E. Garbusi, and W. Osten, 'Testing Aspheres,' Optics and Photonics News, vol. 19, pp. 24-29, 2008/04/01 2008. [29] M. Dubbelman, V. A. D. P. Sicam, and G. L. Van der Heijde, 'The shape of the anterior and posterior surface of the aging human cornea,' Vision Research, vol. 46, pp. 993-1001, 2006. [30] Y.-C. Chen, C.-J. Jiang, T.-H. Yang, and C.-C. Sun, 'Development of a human eye model incorporated with intraocular scattering for visual performance assessment,' Journal of Biomedical Optics, vol. 17, pp. 0750091-07500911, July 2012. [31] S. Parmet, C. Lynm, and R. M. Glass, 'Coronary artery bypass grafting,' JAMA, vol. 299, pp. 1856-1856, 2008. [32] J. S. C. Smith et al., 'ACC/AHA guidelines for percutaneous coronary intervention (revision of the 1993 PTCA guidelines),' Journal of the American College of Cardiology, vol. 37, pp. 2239-2239, 2001. [33] P. W. Serruys et al., 'Percutaneous Coronary Intervention versus Coronary-Artery Bypass Grafting for Severe Coronary Artery Disease,' New England Journal of Medicine, vol. 360, pp. 961-972, 2009. [34] G. W. Vetrovec 'Improving Reperfusion in Patients with Myocardial Infarction,' New England Journal of Medicine, vol. 358, pp. 634-637, 2008. [35] B. c. staff, 'Medical gallery of Blausen Medical 2014,' Wikiversity Journal of Medicine, vol. 1, p. 10, 2014. [36] 李佳翰 and 謝長宗, '人工角膜之積層製造技術研發用--子計畫三:人工角膜光彈分析設計與光學實驗測試(2/3),' 2017. [37] A. Sinha Roy and J. W. J. Dupps, 'Patient-Specific Computational Modeling of Keratoconus Progression and Differential Responses to Collagen Cross-linking,' Investigative Ophthalmology & Visual Science, vol. 52, pp. 9174-9187, 2011. [38] Y. Li, R. Shekhar, and D. Huang, 'Corneal Pachymetry Mapping with High-speed Optical Coherence Tomography,' Ophthalmology, vol. 113, pp. 792-799.e2, 5// 2006. [39] V. M. Rathi, P. S. Mandathara, M. Taneja, S. Dumpati, and V. S. Sangwan, 'Scleral lens for keratoconus: technology update,' Clinical Ophthalmology (Auckland, N.Z.), vol. 9, pp. 2013-2018, 10/28 2015. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66912 | - |
| dc.description.abstract | 本研究之目的為開發電腦輔助設計(CAD)建模工具以建立人體組織三維生物列印模型,並應用在生物醫學領域。首先,以AutoCAD、Visual LISP和DCL語言開發一三維重建工具,以橫截面重建人體組織(包括冠狀動脈、動脈和氣管)之模型。該工具可將橫截面進行曲線擬合,並將各橫截面連接,以產生擬真並具有所需管壁厚度的模型。同時,該工具也可將各橫截面的形心連結產生一條路徑,並使用圓形截面掃略該路徑以建立具更平整表面之簡化模型。除了開發該三維重建工具外,本研究亦開發參數化建模工具,從數學模型建立非球面和非對稱的眼角膜模型。該工具能從輸入的量測參數,建立分層且厚度可設定的角膜模型。最後,本研究開發一程式以處理角膜地形儀之原始資料,並建立一擬真角膜模型。該程式首先由原始資料計算出三維座標並產生一個點資料雲,再藉由該點資料雲建立出角膜之三維模型。藉由本研究開發之工具和程式,建模過程變得自動化且有效率。只要在所開發的工具或程式中設定參數,就能建立擬真或參數化的模型。本研究建立之人體組織模型在生物醫學領域有廣泛的應用,包括人工組織列印、光學模擬、術前規劃和氣流實驗。 | zh_TW |
| dc.description.abstract | The purpose of this study is to develop computer-aided design (CAD) tools to construct 3D bio-printing models of human tissues for biomedical applications. First, a 3D reconstruction tool is developed based on AutoCAD, Visual LISP, and DCL language to construct human tissues (e.g., coronary artery, arteries, and trachea) models from cross sections. The tool can construct mimic models with desired wall thickness by curve-fitting the cross sections and linking them together. Meanwhile, the tool can construct simplified models with more smooth surface by sweeping a circle region over a path which is created by linking the centroids of all cross sections. Beside the 3D reconstruction tool, parametric modeling tools are also designed to construct aspherical and asymmetric cornea models based on mathematical models. The tools would construct layered cornea models with desired thickness by setting measured parameters. Finally, a program is written to process corneal topography raw data and construct a mimic cornea model. The program would first calculate 3D coordinates from the raw data to generate a point cloud and then construct a model based on it. With the developed tools and programs, modeling process becomes both automatic and efficient. Mimic models or parametric models can be constructed by simply setting parameters in the user interface of the tools and programs. The constructed models have a wide range of biomedical applications, including artificial tissue printing, optical simulation, preoperative planning, and gas flow experiments. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T01:14:43Z (GMT). No. of bitstreams: 1 ntu-106-R04522621-1.pdf: 6342908 bytes, checksum: 34c421e8d371d26df2f38501c24d5adb (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 國立臺灣大學碩士學位論文口試委員會審定書 i
誌謝 ii 中文摘要 iii ABSTRACT iv CONTENTS v LIST OF FIGURES viii LIST OF TABLES xiii Chapter 1 Introduction 1 1.1 Background 1 1.2 Literature review 2 1.3 Research motivation 7 1.4 Thesis outline 9 Chapter 2 Medical imaging, modeling methods and structure of human tissues …………………………………………………………………………………. 10 2.1 Medical imaging 10 2.1.1 Computed tomography (CT) scan 10 2.1.2 Corneal topography 11 2.2 Parametric modeling and parametric design 13 2.3 Two local view method 15 2.4 3D reconstruction from multiple images or 2D cross sections 17 2.5 3D reconstruction from point cloud 18 2.6 Dimensions and geometry of human blood vessels 19 2.7 Structure and dimensions of human trachea 23 2.8 Structure and shape of human cornea 26 2.8.1 Corneal structure 26 2.8.2 Corneal shape 27 Chapter 3 CAD modeling of human blood vessels and trachea 31 3.1 Parametric modeling of human coronary artery 31 3.2 3D reconstruction processes and development of an automatic 3D reconstruction tool 33 3.2.1 3D reconstruction from multiple images 34 3.2.2 Getting cross sections 36 3.2.3 3D reconstruction from 2D cross sections and development of an automatic 3D reconstruction tool 38 3.2.4 Construct hollow models 39 3.2.5 Construct solid models 42 3.2.6 Construct simplified models 42 3.3 3D reconstruction of human blood vessels 43 3.4 3D reconstruction of human trachea 46 3.5 Application of coronary artery and trachea models on medical treatment and research 48 Chapter 4 CAD modeling of human cornea 51 4.1 Parametric modeling of aspherical cornea 51 4.2 Parametric modeling of asymmetric cornea 55 4.3 Modeling of cornea with two local view method 58 4.4 3D reconstruction of cornea with topographic data 59 4.5 Optical simulation with cornea 63 4.6 Application of cornea models 65 Chapter 5 Conclusions and suggestions 67 5.1 Conclusions 67 5.2 Suggestions 69 REFERENCES 70 Appendix A User Manual of Automatic 3D Reconstruction Tool 73 Appendix B User Manual of ImageJ 76 Appendix C User Manual of Parametric Modeling Tool of Aspherical Cornea 81 Appendix D User Manual of Parametric Modeling Tool of Asymmetric Cornea 83 Vitae 作者簡歷 85 | |
| dc.language.iso | en | |
| dc.subject | 電腦輔助設計模型建構 | zh_TW |
| dc.subject | 三維重建 | zh_TW |
| dc.subject | 參數化建模 | zh_TW |
| dc.subject | 三維生物列印 | zh_TW |
| dc.subject | 角膜地形圖 | zh_TW |
| dc.subject | CAD modeling | en |
| dc.subject | corneal topography | en |
| dc.subject | 3D bio-printing | en |
| dc.subject | parametric modeling | en |
| dc.subject | 3D reconstruction | en |
| dc.title | 人體組織三維生物列印之電腦輔助設計模型建構 | zh_TW |
| dc.title | CAD Modeling for 3D Bio-printing of Human Tissues | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 顏家鈺,劉正良 | |
| dc.subject.keyword | 電腦輔助設計模型建構,三維重建,參數化建模,三維生物列印,角膜地形圖, | zh_TW |
| dc.subject.keyword | CAD modeling,3D reconstruction,parametric modeling,3D bio-printing,corneal topography, | en |
| dc.relation.page | 85 | |
| dc.identifier.doi | 10.6342/NTU201703316 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-08-15 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 6.19 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
