請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6690完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭景暉 | |
| dc.contributor.author | I-Li Chen | en |
| dc.contributor.author | 陳怡俐 | zh_TW |
| dc.date.accessioned | 2021-05-17T09:16:22Z | - |
| dc.date.available | 2014-09-17 | |
| dc.date.available | 2021-05-17T09:16:22Z | - |
| dc.date.copyright | 2012-09-17 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-03 | |
| dc.identifier.citation | Barry FP, Murphy JM (2004). Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol 36 (4):568-84
Beck GR, Zerler B, Moran E (2000). Phosphate is a specific signal for induction of osteopontin gene expression. Proc Natl Acad Sci USA 97 (15):8352-7 Casagrande L, Demarco FF, Zhang Z, Araujo FB, Shi S, Nör J (2010). Dentin-derived BMP-2 and odontoblast differentiation. Journal of Dental Research 89 (6):603-8 Chan CP, Lan WH, Chang MC, Chen YJ, Lan WC, Chang HH, Jeng JH (2005). Effects of TGF-beta s on the growth, collagen synthesis and collagen lattice contraction of human dental pulp fibroblasts in vitro. Arch Oral Biol 50 (5):469-79 Chaussain-Miller C, Fioretti F, Goldberg M, Menashi S (2006). The role of matrix metalloproteinases (MMPs) in human caries. J Dent Res 85 (1):22-32 Cordeiro MM, Dong Z, Kaneko T, Zhang Z, Miyazawa M, Shi S, Smith AJ, Nör JE (2008). Dental pulp tissue engineering with stem cells from exfoliated deciduous teeth. Journal of Endodontics 34 (8):962-9 Goseki-Sone M, Yamada A, Hamatani R, Mizoi L, Iimura T, Ezawa I (2002). Phosphate depletion enhances bone morphogenetic protein-4 gene expression in a cultured mouse marrow stromal cell line ST2. Biochem Biophys Res Commun 299 (3):395-9 Goseki-Sone M, Iimura T, Takeda K, Nifuji A, Ogata Y, Yanagishita M, Oida S (1999). Expression of mRNA encoding tissue-nonspecific alkaline phosphatase in human dental tissues. Calcif Tissue Int 64 (2):160-235 Govindasamy V, Abdullah AN, Ronald VS, Musa S, Ab Aziz ZA, Zain RB, Totey S, Bhonde RR, Abu Kasim NH (2010). Inherent differential propensity of dental pulp stem cells derived from human deciduous and permanent teeth. Journal of Endodontics 36 (9):1504-15 Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000). Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA 97 (25):13625-30 Gui T, Sun Y, Shimokado A, Muragaki Y (2012). The Roles of Mitogen-Activated Protein Kinase Pathways in TGF-β-Induced Epithelial-Mesenchymal Transition. Journal of Signal Transduction 2012:289243-52 He H, Yu J, Liu Y, Lu S, Liu H, Shi J, Jin Y (2008).Effects of FGF2 and TGFbeta1 on the differentiation of human dental pulp stem cells in vitro. Cell Biol Int 32 (7):827-34 Hoffmann A, Preobrazhenska O, Wodarczyk C, Medler Y, Winkel A, Shahab S, Huylebroeck D, Gross G, Verschueren K (2005). Transforming growth factor-betaactivated kinase-1 (TAK1), a MAP3K, interacts with Smad proteins and interferes with osteogenesis in murine mesenchymal progenitors. J Biol Chem 280 (29):27271-83 Hu CC, Zhang C, Qian Q, Tatum NB (1998). Reparative dentin formation in rat molars after direct pulp capping with growth factors. J Endod 24 (11):744-51 Huang XF, Chai Y (2010). TGF-ß signalling and tooth development. Chin J Dent Res 13(1):7-15 Huang GT, Gronthos S, Shi S (2009). Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. Journal of Dental Research 88 (9):792-806 Inman GJ, Nicolás FJ, Callahan JF, Harling JD, Gaster LM, Reith AD, Laping NJ, Hill CS (2002). SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol Pharmacol 62 (1):65-74 Janssens K, ten Dijke P, Janssens S, Van Hul W (2005). Transforming growth factorbeta1 to the bone. Endocr Rev 26 (6):743-74 Kerkis I, Kerkis A, Dozortsev D, Stukart-Parsons GC, Gomes Massironi SM, Pereira LV, Caplan AI, Cerruti HF (2006). Isolation and characterization of a population of immature dental pulp stem cells expressing OCT-4 and other embryonic stem cell markers. Cells Tissues Organs 184:105-16 Liang RF, Nishimura S, Maruyama S, Hanazawa S, Kitano S, Sato S (1990). Effects of transforming growth factor-beta and epidermal growth factor on clonal rat pulp cells. Arch Oral Biol 35 (1):7-11 Lin PS, Chang MC, Chan CP, Lee SY, Lee JJ, Tsai YL, Tseng HC, Tai TF, Lin HJ, Jeng JH (2011). Transforming growth factor β1 down-regulates Runx-2 and alkaline phosphatase activity of human dental pulp cells via ALK5/Smad2/3 signaling. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 111 (3):394-400 Lyons RM, Moses HL (1990). Transforming growth factors and the regulation of cell proliferation. Eur J Biochem 187 (3):467-73 Massague J (1990). the transforming factor-beta family. Annual Review of Cell Biology 6:597-641 Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, Shi S (2003). SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA 100 (10):5807-12 Morsczeck C, Völlner F, Saugspier M, Brandl C, Reichert T, Driemel O, Schmalz G (2010). Comparison of human dental follicle cells (DFCs) and stem cells from human exfoliated deciduous teeth (SHED) after neural differentiation in vitro. Clin Oral Invest 14 (4):433-40 Moustakas A, Heldin CH (2009). The regulation of TGFbeta signal transduction. Development 136 (22):3699-714 Moustakas A, Heldin CH (2005). Non-Smad TGF-beta signals. Journal of Cell Science 118:3573-84 Nakamura S, Yamada Y, Katagiri W, Sugito T, Ito K, Ueda M (2009). Stem cell proliferation pathways comparison between human exfoliated deciduous teeth and dental pulp stem cells by gene expression profile from promising dental pulp. Journal of Endodontics 35 (11):1536-42 Nakashima M, Nagasawa H, Yamada Y, Reddi AH (1994). Regulatory role of transforming growth factor-beta, bone morphogenetic protein-2, and protein-4 on gene expression of extracellular matrix proteins and differentiation of dental pulp cells. Dev Biol 162 (1):18-28 Nakashima M (1992). The effects of growth factors on DNA synthesis, proteoglycan synthesis and alkaline phosphatase activity in bovine dental pulp cells. Arch Oral Biol 37 (3):231-6 Narayanan K, Srinivas R, Ramachandran A, Hao J, Quinn B, George A (2001). Differentiation of embryonic mesenchymal cells to odontoblast-like cells by overexpression of dentin matrix protein 1. Proc Natl Acad Sci USA 98 (8):4516-21 Nie X, Tian W, Zhang Y, Chen X, Dong R, Jiang M, Chen F, Jin Y (2006). Induction of transforming growth factor-beta 1 on dentine pulp cells in different culture patterns. Cell Biol Int 30 (4):295-300 Niu L, Zhang L, Jiao K, Li F, Ding Y, Wang D, Wang M, Tay F, Chen J (2011). Localization of MMP-2, MMP-9, TIMP-1, and TIMP-2 in human coronal dentine. Journal of Dentistry 39 (8):536-42 Niwa H (2007). How is pluripotency determined and maintained?. Development 134 (4):635-46 Overall CM, Wrana JL, Sodek J (1991). Transcriptional and post-transcriptional regulation of 72-kDa gelatinase/type IV collagenase by transforming growth factorbeta 1 in human fibroblasts. Comparisons with collagenase and tissue inhibitor of matrix metalloproteinase gene expression. J Biol Chem 266 (21):14064-71 Palosaari H, Tasanen K, Risteli J, Larmas M, Salo T, Tjäderhane L (2001). Baseline expression and effect of TGF-beta 1 on type I and III collagen mRNA and protein synthesis in human odontoblasts and pulp cells in vitro. Calcif Tissue Int 68 (2):22-9 Pardali E, Goumans M, ten Dijke P (2010). Signaling by members of the TGF-beta family in vascular morphogenesis and disease. Trends in Cell Biology 20 (9):556-67 Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999). Multilineage potential of adult human mesenchymal stem cells. Science 284 (5411):143-7 Seo BM, Sonoyama W, Yamaza T, Coppe C, Kikuiri T, Akiyama K, Lee JS, Shi S (2008). SHED repair critical-size calvarial defects in mice. Oral Diseases 14 (5):8-34 Shi S, Bartold PM, Miura M, Seo BM, Robey PG, Gronthos S (2005). The efficacy of mesenchymal stem cells to regenerate and repair dental structures. Orthod Craniofac Res 8 (3):191-9 Shiba H, Fujita T, Doi N, Nakamura S, Nakanishi K, Takemoto T, Hino T, Noshiro M, Kawamoto T, Kurihara H, Kato Y (1998). Differential effects of various growth factors and cytokines on the syntheses of DNA, type I collagen, laminin, fibronectin, osteonectin/secreted protein, acidic and rich in cysteine (SPARC), and alkaline phosphatase by human pulp cells in culture. J Cell Physiol 174 (2):194-205 Shim JH, Xiao C, Paschal AE, Bailey ST, Rao P, Hayden MS, Lee KY, Bussey C, Steckel M, Tanaka N, Yamada G, Akira S, Matsumoto K, Ghosh S (2005). TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo. Genes & Development 19 (22):2668-81 Shirakawa M, Shiba H, Nakanishi K, Ogawa T, Okamoto H, Nakashima K, Noshiro M, Kato Y (1994). Transforming growth factor-beta-1 reduces alkaline phosphatase mRNA and activity and stimulates cell proliferation in cultures of human pulp cells. Journal of Dental Research 73 (9):1509-14 Sloan AJ, Perry H, Matthews JB, Smith AJ (2000). Transforming growth factor-beta isoform expression in mature human healthy and carious molar teeth. Histochem J 32 (4):247-52 ten Dijke P, Arthur H (2007). Extracellular control of TGFbeta signalling in vascular development and disease. Nat Rev Mol Cell Biol 8 (11):857-69 Tjäderhane L, Salo T, Larjava H, Larmas M, Overall CM (1998). A novel organ culture method to study the function of human odontoblasts in vitro: gelatinase expression by odontoblasts is differentially regulated by TGF-beta1. J Dent Res 77 (7):1486-96 Tziafas D, Alvanou A, Papadimitriou S, Gasic J, Komnenou A (1998). Effects of recombinant basic fibroblast growth factor, insulin-like growth factor-II and transforming growth factor-beta 1 on dog dental pulp cells in vivo. Arch Oral Biol 43 (6):431-44 Wang J, Wang X, Sun Z, Wang X, Yang H, Shi S (2010), Wang S. Stem cells from human-exfoliated deciduous teeth can differentiate into dopaminergic neuron-like cells. Stem Cells and Development 19 (9):1375-83 Wang F, Hu T, Tan H, Zhou X (2006a). p38 Mitogen-activated protein kinase affects transforming growth factor-beta/Smad signaling in human dental pulp cells. Mol Cell Biochem 291:49-54 Wang F, Hu T, Zhou X (2006b). p38 mitogen-activated protein kinase and alkaline phosphatase in human dental pulp cells. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 102 (1):114-8 Watanabe H, de Caestecker MP, Yamada Y (2001). Transcriptional cross-talk between Smad, ERK1/2, and p38 mitogen-activated protein kinase pathways regulates transforming growth factor-beta-induced aggrecan gene expression in chondrogenic ATDC5 cells. J Biol Chem 276 (17):14466-73 Wrana JL, Attisano L, Wieser R, Ventura F, Massagué J (1994). Mechanism of activation of the TGF-beta receptor. Nature 370 (6488):341-7 Yamaza T, Kentaro A, Chen C, Liu Y, Shi Y, Gronthos S, Wang S, Shi S (2010). Immunomodulatory properties of stem cells from human exfoliated deciduous teeth. Stem Cell Res Ther 1 (1):5-14 Zhang W, Yuan J, Yang Y, Xu L, Wang Q, Zuo W, Fang X, Chen Y (2011). Monomeric type I and type III transforming growth factor-β receptors and their dimerization revealed by single-molecule imaging. Nature Publishing Group 20 (11):1216-1223 Zhang Y (2009). Non-Smad pathways in TGF-beta signaling. Cell Res 19 (1):128-39 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6690 | - |
| dc.description.abstract | 實驗目的:轉型生長因子(Transforming growth factor-beta1, TGF-β1)調控許多生理機制,且被認為在牙齒組織受傷的防禦系統中扮演重要的角色,近十年才被發現的脫落乳牙牙髓幹細胞(Dental pulp stem cells from human exfoliated deciduous
teeth, SHED)被認為是良好的幹細胞來源而受到矚目,然而關於TGF-β1和SHED之間的作用目前仍尚未了解,而本實驗之目的在於研究TGF-β1對於SHED在細胞生長與分化的影響,還有其可能調控的訊息傳導路徑。 實驗方法:加入不同濃度的TGF-β1至細胞培養液中,我們利用細胞存活率分析(MTT assay)、 膠原蛋白定量測定(Sircol collagen assay)、 鹼性磷酸酶染色及活性測定(ALP staining & ALP activity quantitative assay )去檢測TGF-β1對於SHED在細胞生長、細胞外基質的生成、細胞分化的影響,此外,我們也加入不 同的抑制劑,包含SB431542、U0126、5Z-7-Oxozeaenol、SB203580四種,探測可能參與調控細胞反應的訊息傳導路徑。利用酵素連結免疫吸附法(ELISA)去評估不同訊息傳導路徑之間的交互作用,而基因表現的改變則以反轉錄聚合酶反應(RT-PCR)的結果來呈現。 實驗結果:TGF-β1刺激促進SHED的細胞生長和細胞外基質的生成,而這個作用可以被SB431542、5Z-7-Oxozeaenol、SB203580所抑制,而U0126的加入則沒有明顯的影響。在細胞分化的部份,低濃度的 TGF-β1 (0.5-1 ng/ml)會促進鹼性磷酸酶的活性,然而高濃度的 TGF-β1 (5-10 ng/ml)則會有抑制的效果,SB431542能阻斷TGF-β1在低濃度和高濃度的作用,U0126和5Z-7-Oxozeaenol則只能阻斷低濃度 TGF-β1的影響,而SB203580本身就對鹼性磷酸酶的活性就有強烈的抑制作用。此外,磷酸化Smad2的表現可以很快的被TGF-β1誘發,且能被SB431542所抑制,然而5Z-7-Oxozeaenol的加入則是可以完全阻斷TGF-β1對於Smad2的磷酸化。 結論:TGF-β1對於SHED細胞反應的訊息調控是非常複雜的,除了Smad和non-Smad訊息傳導路徑之間可能存在的交互作用,不同濃度的TGF-β1還會經由不同的訊息傳導路徑來調控產生不同的細胞反應,本實驗的結果提供我們對於乳牙牙髓修復的機制有進一步的了解,對於未來在牙髓組織再生方面的研究也有所幫助。 | zh_TW |
| dc.description.abstract | Aim : Transforming growth factor-β1 (TGF-β1) regulates many biological process and is thought to be important in response to dental tissue injury. Dental pulp stem cells
from human exfoliated deciduous teeth (SHED) were discovered in the recent ten years and considered a desirable stem cell source. The purpose of this study is to investigate the effects of TGF-β1 on SHED. We hypothesize that TGF-β1 can affect cell viability, collagen production and alkaline phosphatase (ALP) expression in SHED via both Smad and non-Smad MAPK pathway, which might have cross-talk with each other. Materials and Methods : Primary-cultured SHED were treated with different concentration of TGF-β1. We used MTT assay, Sircol Collagen assay, ALP staining and ALP activity quantitative assay to detect the effect of TGF-β1 on cell viability, matrix formation, and cell differentiation. Besides, SHED were pretreated with SB431542 (an ALK5-Smad2/3 inhibitor), U0126 (a MEK-ERK1/2 inhibitor), 5Z-7-Oxozeaenol (a TAK1 inhibitor), or SB203580 (a p38 MAPK inhibitor) for examining the related signaling pathways. Phosphorylation of Smad2 was examined by Enzyme-linked immunosorbent assay (ELISA) for evaluating the cross-talk within the Smad and non-Smad MAPK pathway. Changes in mRNA expression were determined by reversetranscription Polymerase Chain Reaction (RT-PCR). Results : TGF-β1 stimulated cell proliferation and matrix production of SHED in a dose-dependent manner, which could be reversed by pretreatment of SB431542, 5Z-7-Oxozeaenol and SB203580; nevertheless, it was not suppressed by U0126. In cell differentiation, low concentration of TGF-β1 (0.5-1 ng/ml) up-regulated the ALP activity of SHED, whereas high concentration (5-10 ng/ml) down-regulated its expression. SB431542 could reverse the effect of TGF-β1 at both low and high concentrations. SB203580 itself down-regulated ALP activity significantly; however, 5Z-7-Oxozeaenol only reversed the effect of TGF-β1 in low concentration. Concerning the signal transduction, the expression of phospho-Smad2, which was quickly induced by TGF-β1 and repressed by SB431542, was found to be completely abolished by 5Z-7-Oxozeaenol. Conclusion : The regulation about signal transduction of TGF-β1 in SHED is complicated. In addition to the cross-talk of Smad and non-Smad pathway, different concentration of TGF-β1 can mediate different cell response via different signaling pathways. These results are crucial to the mechanism of pulpal repair, that can be useful for further investigation of pulpal regeneration. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-17T09:16:22Z (GMT). No. of bitstreams: 1 ntu-101-P98422004-1.pdf: 60632741 bytes, checksum: 65fe4f3e2fe9896db82ae26a90b1d8e1 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 口試委員會審定書………………………………………………………ii
中文摘要………………………………………………………………iii Abstract…………………………………………………………………v Chapter I Literature Review…………………………………….…1 1.1- Stem cells from human exfoliated deciduous teeth (SHED)……………………………………………………………………1 1.2- Transforming growth factor-β (TGF-β)……………………………………………………………………………3 1.2.1- Isoforms and peptide structure of TGF-β……………………………………………………………………………………………………………………………………4 1.2.2- Receptors of TGF-β…………………………………………………………………………5 1.2.3- TGF-β1 in tooth development and dental-pulp complex……………………………………………………………………5 1.3- Signal transduction pathway of TGF-β……………………………………6 1.3.1- Canonical Smad pathway……………………………………6 1.3.2- Non-Smad pathway……………………………………………7 1.4- Extracellular matrix (ECM)…………………………………8 1.5- Alkaline phosphatase (ALP)…………………………………9 Chapter II The Purposes and Hypothesis of the Study………10 Chapter III Materials and Methods………………………………11 3.1- Materials………………………………………………………11 3.2- Culture of pulp cells from human exfoliated deciduous teeth……………………………………………………………………12 3.3- Flow cytometric analysis…………………………………12 3.4- MTT viability assay…………………………………………13 3.5- Collagen content assay………………………………………14 3.6- Alkaline phosphatase Stain (ALP stain)…………………14 3.7- Alkaline phosphatase activity quantitative assay (ALP quantitative assay)…………………………………………………15 3.7.1- Protein quantification……………………………………15 3.7.2- ALP quantitative assay……………………………………16 3.8- Reverse transcription polymerase chain reaction (RT-PCR)………………………………………………………………………16 3.8.1- Total RNA isolation………………………………………17 3.8.2- RNA quantification…………………………………………18 3.8.3- Reverse transcription (RT)………………………………18 3.8.4- Polymerase chain reaction (PCR)………………………19 3.9- Enzyme-linked immunosorbent assay (ELISA)……………19 3.9.1- Total protein isolation and quantification…………19 3.9.2- ELISA…………………………………………………………20 3.10- Statistical analysis………………………………………21 Chapter IV Results……………………………………………………22 4.1- Morphology observation on the dental pulp stem cells from human exfoliated deciduous teeth (SHED)…………………22 4.2- Surface marker of SHED………………………………………22 4.3- Effect of TGF-β1 on cell viability of SHED and its modulation by SB431542,U0126, SB203580, 5Z-7-Oxozeaenol - MTT assay………………………………………………………………23 4.4- Effect of TGF-β1 on collagen synthesis of SHED and its modulation by SB431542, U0126, SB203580, 5Z-7-Oxozeaenol - Sircol collagen assay………………………………24 4.5- Effect of TGF-β1 on ALP activity of SHED and its modulation by SB431542,U0126, SB203580, 5Z-7-Oxozeaenol - ALP stain and quantitative assay…………………………………25 4.6- Effect of TGF-β1 on the expression of phospho-Smad2 of SHED and its modulation by SB431542, U0126, SB203580, 5Z-7-Oxozeaenol - ELISA…………………………………………………26 Chapter V Discussion…………………………………………………27 5.1- Effect of TGF-β1 on cell viability of SHED…………27 5.2- Effect of TGF-β1 on matrix formation of SHED………28 5.3- Effect of TGF-β1 on the differentiation of SHED……30 5.4- The cross-talk of Smad and non-Smad pathway…………31 Chapter VI Conclusion………………………………………………33 References……………………………………………………………35 | |
| dc.language.iso | en | |
| dc.title | TGF-β1對於脫落乳牙牙髓幹細胞之訊息傳導機制
及其生長與分化的影響 | zh_TW |
| dc.title | The signal transduction pathway of TGF-β1 and its effect
on the growth and differentiation of dental pulp stem cells from human exfoliated deciduous teeth | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 張曉華 | |
| dc.contributor.oralexamcommittee | 呂炫?(Hsein-Kun Lu),高嘉澤,黃翠賢 | |
| dc.subject.keyword | 脫落乳牙牙髓幹細胞,轉型生長因子,鹼性磷酸酶,Smad,non-Smad, | zh_TW |
| dc.subject.keyword | SHED,TGF-β1,Smad,non-Smad,Alkaline phosphatase, | en |
| dc.relation.page | 89 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2012-08-03 | |
| dc.contributor.author-college | 牙醫專業學院 | zh_TW |
| dc.contributor.author-dept | 臨床牙醫學研究所 | zh_TW |
| 顯示於系所單位: | 臨床牙醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf | 59.21 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
