Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66907
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor胡明哲
dc.contributor.authorHsuan-Te Linen
dc.contributor.author林軒德zh_TW
dc.date.accessioned2021-06-17T01:14:35Z-
dc.date.available2022-08-24
dc.date.copyright2017-08-24
dc.date.issued2017
dc.date.submitted2017-08-14
dc.identifier.citation1. Chen, S. T., Yang, T. C., Kuo, C. M., Kuo, C. H., & Yu, P. S. (2013). Probabilistic Drought Forecasting in Southern Taiwan Using El Niño-Southern Oscillation Index. Terrestrial, Atmospheric & Oceanic Sciences, 24(5).
2. Deyle, E. R., & Sugihara, G. (2011). Generalized theorems for nonlinear state space reconstruction. PLoS One, 6(3), e18295.
3. Deyle, E. R., Fogarty, M., Hsieh, C. H., Kaufman, L., MacCall, A. D., Munch, S. B., ... & Sugihara, G. (2013). Predicting climate effects on Pacific sardine. Proceedings of the National Academy of Sciences, 110(16), 6430-6435.
4. Gan, T. Y., & Gobena, A. (2012, April). Incorporation of seasonal climate forecasts in the ensemble streamflow prediction system. In EGU General Assembly Conference Abstracts (Vol. 14, p. 1712).
5. Glaser, S. M., Fogarty, M. J., Liu, H., Altman, I., Hsieh, C. H., Kaufman, L., ... & Sugihara, G. (2014). Complex dynamics may limit prediction in marine fisheries. Fish and Fisheries, 15(4), 616-633.
6. Glaser, S. M., Ye, H., Maunder, M., MacCall, A., Fogarty, M., & Sugihara, G. (2011). Detecting and forecasting complex nonlinear dynamics in spatially structured catch-per-unit-effort time series for North Pacific albacore (Thunnus alalunga). Canadian Journal of Fisheries and Aquatic Sciences, 68(3), 400-412.
7. Haith, D. A., & Shoenaker, L. L. (1987). Generalized watershed loading functions for stream flow nutrients. JAWRA Journal of the American Water Resources Association, 23(3), 471-478.
8. Hsieh, C. H., Glaser, S. M., Lucas, A. J., & Sugihara, G. (2005). Distinguishing random environmental fluctuations from ecological catastrophes for the North Pacific Ocean. Nature, 435(7040), 336-340.
9. IPCC. (2013). Fifth Assessment Report - Climate Change 2013: The Physical Science.
10. Lall, U., & Sharma, A. (1996). A nearest neighbor bootstrap for resampling hydrologic time series. Water Resources Research, 32(3), 679-693.
11. McKee, T. B., Doesken, N. J., & Kleist, J. (1993, January). The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology (Vol. 17, No. 22, pp. 179-183). Boston, MA: American Meteorological Society.
12. Piechota, T. C., Chiew, F. H., Dracup, J. A., & McMahon, T. A. (1998). Seasonal streamflow forecasting in eastern Australia and the El Niño–Southern Oscillation. Water Resources Research, 34(11), 3035-3044.
13. Sugihara, G. (1994). Nonlinear forecasting for the classification of natural time series. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 348(1688), 477-495.
14. Sugihara, G., Allan, W., Sobel, D., & Allan, K. D. (1996). Nonlinear control of heart rate variability in human infants. Proceedings of the National Academy of Sciences, 93(6), 2608-2613.
15. Sugihara, G., & May, R. M. (1990). Nonlinear forecasting as a way of distinguishing chaos from. Nature, 344, 6268.
16. Tootle, G. A., Piechota, T. C., & Gutiérrez, F. (2008). The relationships between Pacific and Atlantic Ocean sea surface temperatures and Colombian streamflow variability. Journal of Hydrology, 349(3), 268-276.
17. United Nations Framework Convention on Climate Change(UNFCCC). (2014). http://unfccc.int/focus/adaptation/items/6999.php.
18. United Kingdom Climate Impacts Programme. (2013). The UKCIP Adaptation Wizard v 4.0. http://www.ukcip.org.uk/wizard/.
19. Wang, Q. J., Robertson, D. E., & Chiew, F. H. S. (2009). A Bayesian joint probability modeling approach for seasonal forecasting of streamflows at multiple sites. Water resources research, 45(5).
20. Xiao, M., Zhang, Q., Singh, V. P., & Liu, L. (2016). Transitional properties of droughts and related impacts of climate indices in the Pearl River basin, China. Journal of Hydrology, 534, 397-406.
21. Yuan, X., Wood, E. F., Luo, L., & Pan, M. (2011). A first look at Climate Forecast System version 2 (CFSv2) for hydrological seasonal prediction. Geophysical research letters, 38(13).
22. 中央氣象局(2008),二步法海氣動力統計氣候預報模式統計降尺度預報。
23. 童慶斌, 劉子明, & 李明旭. (2006),應用季節性氣候預報於水庫蓄水量預測. 農業工程學報, 52(2), 51-66.
24. 游保杉(2004),長期雨量變動對農業乾旱發生頻率影響之探討.
25. 李晏全(2006),石門水庫枯水期月與季入流量預報之研究. 成功大學水利及海洋工程學系學位論文
26. 郭俊超(2009),結合季節雨量與水文模式於枯水期旬流量預測. 成功大學水利及海洋工程學系學位論文
27. 童新茹(2011),結合季長期天氣預報與水文模式推估石門水庫入流量. 中央大學水文與海洋科學研究所學位論文
28. 王顗泰(2013),應用季長期天氣展望預報台灣中部地區缺水機率. 成功大學水利及海洋工程學系學位論文
29. 羅萬倫(2015),短期氣候預報在石門水庫梅雨期之水資源管理應用. 中央大學水文與海洋科學研究所學位論文.
30. 連宛渝(2013),氣象合成與水文模式之發展及因應氣候變遷之供水系統調適能力建構. 臺灣大學生物環境系統工程學研究所學位論文.
31. 曾馨儀(2015),結合季節性氣候預報發展新型水庫運用規線-以石門水庫為例. 臺灣大學生物環境系統工程學研究所學位論文.
32. 黃旭杰(2016),以產業觀點建構區域供水系統之氣候調適能力. 臺灣大學生物環境系統工程學研究所學位論文.
33. 田育全(2017),結合季長期天氣展望發展乾旱預警與支援決策系統. 臺灣大學生物環境系統工程學研究所學位論文.
34. 國家發展委員會(2013),「濁水溪整體治理綱要計畫(101~104年)」,http://www.ndc.gov.tw/m1.aspx?sNo=0019522#.VSoeL9yUeSo [accessed 11 Apr 2015]。
35. 經濟部水利署水利規劃試驗所(2008),濁水溪水系現有水庫水資源聯合運用可行性評估(1)。
36. 經濟部水利署(2003),日月潭水庫運用要點。
37. 經濟部水利署(2009),台灣地區水資源需求潛勢評估及經理策略檢討。
38. 經濟部水利署(2011),集集攔河堰運用要點。
39. 經濟部水利署(2011),霧社水庫運用要點。
40. 經濟部水利署水利規劃試驗所(2012),強化中部水資源分區因應氣候變遷水資源管理調適能力研究.
41. 經濟部水利署(2013),中區水資源調配管理系統更新改善及維護.
42. 經濟部(2014) ,旱災災害防救業務計畫.
43. 經濟部水利署(2016),臺灣中部區域水資源經理基本計畫.
44. TaiCCAT 知識平台. 「台灣氣候變遷調適科技知識平台」. http://taiccat.ncu.edu.tw.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66907-
dc.description.abstract台灣降雨時空分配不均,豐枯水期降雨量差距大,當枯水期降雨不足,往往會導致水資源缺乏而無法滿足供水量。近年來,受到氣候變遷影響下,旱澇事件更加頻繁地交替發生,豐枯水期差距更加懸殊,又因為工業園區的增設,導致需水量上升而更容易產生供水缺口,使得政府不得不採取限水、停灌等政策,造成龐大的經濟損失以及人民生活上的不便。為了填補氣候變遷下缺水風險的增加,勢必要訂定對應的調適策略,然而興建新興水源既花錢又曠日費時,欲解決乾旱問題所投資的成本過高。若能及早掌握未來缺水情勢,從水資源調配及管理著手,以乾旱預警系統作為調適手段,將能有效強化水資源系統之調適能力並減少乾旱風險。
本研究應用中央氣象局季長期天氣展望資料,並同時以經驗動態建模(Empirical Dynamic Modeling, EDM)─Simplex projection & S-map預測方法,結合標準化降雨指標(SPI),發展EDM季長期天氣預報方法,並以濁水溪流域為例,透過氣象合成模式(WGEN)、水文模式(GWLF)、水資源系統動力模式評估季長期的供水缺口,並建立乾旱預警系統以預測未來水資源之供需情勢,作為科技部氣候變遷調適科技整合研究計畫(TaiCCAT)氣候調適六步驟中第四步驟「界定與評估調適選項」之調適選項。研究結果顯示,以2012年至2015年間發生的乾旱事件為例,季長期天氣展望雖能合理預測降雨變化趨勢,在預測乾旱有時候會有些許高估情形產生,導致無法準確預測缺水事件發生;Simplex projection & S-map雨量預報以月尺度SPI-1及旬尺度SPI-1預報最能有效預測缺水事件,適合作為乾旱預警系統的預報方法,以提供決策者及早進行水資源的調配。
zh_TW
dc.description.abstractThe temporal and spatial distribution of rainfall is extremely uneven in Taiwan. There is a significant difference between cumulative rainfall in dry seasons and in wet seasons. If the rainfall was insufficient in dry seasons, the water demand couldn’t be satisfied due to the lack of water resourses. Because of the influence of climate change, the frequency of drought or flood events increases gradually. The rainfall difference between wet and dry seasons will be more drastic in comparison to past years. In addition, the development of industrial areas led to increasing water demand and deteriorate water shortage problem. It will force the government to adopt water ratinoning or fallow policy, which would cause a significant economic loss and inconvenience to people. To respond the increasing risk of drought under climate change, corresponding adaptation strategies must be estabalished. However, building new reservoirs is espensive and time-consuming. If the water shortage in the future can be predicted, water resources management and allocation are feasible to prevent the water shortage. The prediction can be also used to develop a drought early warning system as an adaptation measure, which will strengthen the adaptive capacity of the water supply system and reduce the impacts of drought events.
The case study in this research is based on the water supply system of the Chuoshui River basin in Taiwan. This study applies the seasonal weather outlook released from Taiwan Central Weather Bureau (CWB) to establish a drought warning system, which is used to estimate the water shortage in the future. In the meantime, a EDM seasonal weather forecast has been developed in this study by applying empirical dynamic modeling predicting method─Simplex projection & S-map combining with Standard Precipitation Index (SPI). The CWB seasonal weather outlook and the EDM seasonal weather forecast are conducted as an adaptation measure of the fourth step of the six-step decision support tool developed by the Taiwan integrated Research Program on Climate Change Adaptation Technology (TaiCCAT). Also, the weather generator (WGEN), Generalized Watershed Loading Functions (GWLF), and the water supply system dynamic model were integrated in this predicting process. The results show that the CWB seasonal weather outlook can rationally predict the trend of rainfall, but overestimate streamflow value during drought event sometimes. The EDM seasonal weather forecast shows that the predictions by monthly SPI-1 and ten-days SPI-1 can effectively meet the real situation of water shortage. These predictions can be regarded as appropriate methods to inform the drought early warning system, allowing the decition-maker to allocate water resources at an early date.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:14:35Z (GMT). No. of bitstreams: 1
ntu-106-R04622022-1.pdf: 6027017 bytes, checksum: 56359f6b813dfb6b9a59ff451a88868b (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents謝誌 I
摘要 II
Abstract IV
目錄 VI
圖目錄 IX
表目錄 XV
第一章、緒論 1
1.1 研究動機 1
1.2 研究目的 4
1.3 論文架構 5
第二章、文獻回顧 6
2.1 氣候預報應用於水資源領域 6
2.2 時間序列預測 9
2.3 氣候調適步驟 11
2.3.1 英國氣候調適計畫(UKCIP) 11
2.3.2 聯合國氣候變化綱要公約(UNFCCC) 12
2.3.3 氣候變遷調適策略綱領(UNDP-APF) 13
2.3.4 歐洲氣候變遷調適平台 14
第三章、研究方法 17
3.1 TaiCCAT氣候調適六步驟 17
3.1.1 第四步驟──界定與評估調適選項 17
3.2 乾旱預警模式架構 19
3.3 季長期天氣預報模式 20
3.3.1 預報技術評估指標 20
3.3.2 中央氣象局第二代二步法季長期天氣展望 22
3.3.3 經驗動態建模(EDM)──Simplex Projection & S-map 25
3.4 時間降尺度 39
3.4.1 氣象合成模式(WGEN) 39
3.4.2 k-最近鄰居法(k-NN) 47
3.5 水文模式 49
3.5.1 GWLF 模式 49
3.5.2 流量模擬評估指標 55
3.5.3 模式檢定驗證 57
3.6 水資源系統動力模式 58
3.6.1 系統動力模式驗證 62
3.7 缺水評估指標 63
3.7.1 缺水量 63
3.7.2 缺水率 64
3.7.3 缺水延時 64
3.7.4 缺水指數(Shortage Index, SI) 64
3.8 多準則排序評估法 65
3.8.1 多準則排序評估法介紹 65
第四章、研究區域 68
4.1 濁水溪流域水文概述 68
4.2 彰化、雲林水資源系統 76
4.3 水情燈號判定 86
4.4 濁水溪流域各標的用水 89
4.5 區域相似度分析 97
4.5.1 雨量相似度 97
4.5.2 溫度相似度 102
第五章、分析與討論結果 104
5.1 預測模式驗證(基期) 104
5.1.1 第二代二步法驗證(基期) 105
5.1.2 Simplex projection & S-map驗證(基期) 123
5.1.3 預報準確率比較 143
5.2 氣象資料預報繁衍驗證 150
5.2.1 雨量資料 153
5.2.2 溫度資料 162
5.3 流量預報驗證 168
5.3.1 第二代二步法預報驗證 168
5.3.2 Simplex projection & S-map預報驗證 173
5.3.3 流量預報比較 175
5.4 缺水預測比較 181
5.5 EDM預報之應用價值 187
第六章、結論與建議 188
6.1 結論 188
6.2 建議 190
參考文獻 191
附錄一、奇異值分解(singular value decomposition, SVD) 195
dc.language.isozh-TW
dc.subject經驗動態建模zh_TW
dc.subject季長期天氣展望zh_TW
dc.subject乾旱預警zh_TW
dc.subject調適zh_TW
dc.subject標準化降雨指標zh_TW
dc.subjectEmpirical Dynamic Modelingen
dc.subjectSeasonal Weather Outlooken
dc.subjectDrought Early warningen
dc.subjectAdaptationen
dc.subjectStandard Precipitation Indexen
dc.title經驗動態建模於季長期天氣展望與乾旱預警系統之應用-以濁水溪流域為例zh_TW
dc.titleApplying Empirical Dynamic Modeling to Seasonal Weather Outlook and Drought Early Warning System - A Case Study of the Jhuoshuei River Watersheden
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.coadvisor童慶斌
dc.contributor.oralexamcommittee李明旭,許少瑜
dc.subject.keyword經驗動態建模,季長期天氣展望,乾旱預警,調適,標準化降雨指標,zh_TW
dc.subject.keywordEmpirical Dynamic Modeling,Seasonal Weather Outlook,Drought Early warning,Adaptation,Standard Precipitation Index,en
dc.relation.page197
dc.identifier.doi10.6342/NTU201701107
dc.rights.note有償授權
dc.date.accepted2017-08-15
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
5.89 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved