Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66906
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳文章(Wen-Chang Chen)
dc.contributor.authorHui-Ching Hsiehen
dc.contributor.author謝蕙璟zh_TW
dc.date.accessioned2021-06-17T01:14:34Z-
dc.date.available2020-08-24
dc.date.copyright2020-08-24
dc.date.issued2020
dc.date.submitted2020-08-17
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66906-
dc.description.abstract穿戴式科技日新月異,新世代的有機半導體元件不僅整合醫療監測之功能,亦須能於高強度運動下,保有穩定之元件特性,為此可拉伸式半導體材料之開發備受矚目。為開發兼具高效能、環境穩定且高機械耐久性之可拉伸式有機半導體元件,主動層的半導體材料扮演至關重要的角色。相較於無機與有機小分子半導體材料,共軛高分子材料具備低生產成本、輕薄、高效能之光電性質以及潛在之薄膜延展性等優勢,更利於彈性半導體材料之發展。從材料設計方面,可經由物理性摻混或化學合成及修飾之方式,導入彈性且具有其他功能性之材料,進而透過材料相分離尺度與相形態結構之控制,提升材料之光電特性與機械強度,並且應用於各式電子元件。然而,至今為止,多數文獻所開發之彈性半導體材料皆應用在有機電晶體材料,極少數研究著墨於可拉伸式光電元件及記憶體元件。在此篇論文中,我們階段性以物理混摻與化學合成兩種方式設計與製備彈性光電材料,將具高效能藍光特性之聚芴類共軛高分子與多功能之柔性材料整合,並且有系統地探討拉伸過程對於材料相形態與光電特性之影響。研究內容分述於三個章節:第一章,我們將聚芴類共軛高分子材料以物理混摻導入橡膠,藉由材料間之物理性作用力抑制聚集形成,製備可拉伸之光電織布;第二章,我們透過化學合成技術,製備兼具高效能放光特性與彈性之嵌段共聚物材料,該材料能承載100%的拉伸形變;第三章,沿用該物理作用力,將共軛高分子材料與生物可降解之材料進行混摻,運用不同製程控制相分離維度以調控記憶體元件之特性,製備具可降解特性之可撓曲式有機記憶體元件。以上研究顯示,我們成功地展示並開發各種彈性聚芴類光電材料,這些材料於未來穿戴式電子元件之發展具有重要影響力。zh_TW
dc.description.abstractThe development of intrinsically deformable luminescent materials has generated increasing concern owing to their potential applications in wearable electronics. These materials with attractive benefits of lower production costs, light weight, efficient optoelectronic properties and potential film ductility are capable of maintaining good device performance under large mechanical strain. The exploration of relationships among the phase-separated structures, optoelectronic properties, and deformability provides an important insight for highly efficient, ambient stable, and mechanically durable semiconducting polymers. In this thesis, we progressively incorporate luminescent polyfluorene-based conjugated polymers with multifunctional elastomeric materials; furthermore, their strain-dependent morphologies and optoelectronic properties are systematically investigated. From these physical and chemical strategies, we successfully developed intrinsically deformable luminescent conjugated polymers with tunable structures and properties. These novel luminescent rubbery semiconductors are of great significance for future wearable optoelectronic devices.en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:14:34Z (GMT). No. of bitstreams: 1
U0001-1608202022524400.pdf: 70928212 bytes, checksum: e31970e1defbf6362c4a3b3552c1c33a (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents誌謝 i
中文摘要 iii
Abstract iv
Table of Contents v
List of Tables ix
List of Figures x
1. Deformable Conjugated Polymers 1
1.1 Introduction of Conjugated Polymers 1
1.1.1 Chemical Structure and Properties 1
1.1.2 Device Applications 2
1.2 Stretchable Conjugated Polymers 5
1.2.1 Design Strategy of Intrinsically Stretchable Conjugated Polymers 6
1.2.1.1 Physical blending 6
1.2.1.2 Copolymerization 8
1.2.1.3 Side Chain Modification 10
1.2.2 Recent Progress on Intrinsically Stretchable Electronic Devices 10
1.3 Stretchable Polyfluorene Based Materials 14
1.3.1 Polyfluorenes 14
1.3.1.1 Introduction of Polyfluorenes 14
1.3.1.2 Synthesis of Polyfluorenes 15
1.3.1.3 Photophysical Properties of Polyfluorenes 17
1.3.1.4 Recent Progress on Optoelectronic Device Applications 18
1.3.2 Development and Applications of Stretchable Polyfluorene Based
Materials 20
1.4 Research Objectives 22
Table and Figure 25
References 40
2. Stretchable Fluorescent Polyfluorene/Acrylonitrile Butadiene Rubber Blend Electrospun Fibers through Physical Interaction and Geometrical Confinement
50
2.1 Background 50
2.2 Experimental Section 53
2.2.1 Materials 53
2.2.2 Preparation of PFN/elastomer blend electrospun nanofibers 54
2.2.3 Spin-coated film 55
2.2.4 Characterization 55
2.3 Results and Discussion 56
2.3.1 Characterization and influence of the physical interaction between
PFN and elastomer 56
2.3.2 Morphology of the PFN/elastomer blend electrospun fibers 59
2.3.3 Optical properties of the PFN/elastomer electrospun fibers and
corresponding thin films 61
2.3.4 Strain-dependent optical properties of the PFN/NBR-7 fiber mat
film 63
2.4 Summary 65
Table and Figure 67
References 81
3. Unraveling the Stress Effects on the Optical Properties of Stretchable Rod-Coil Polyfluorene-Poly(n-butyl acrylate) Block Copolymer Thin Films 88
3.1 Background 88
3.2 Experimental Section 92
3.2.1 Materials 92
3.2.2 Synthesis of ethynyl end-functionalized polyfluorene (PF) 93
3.2.3 Synthesis of azido-terminated poly(n-butyl acrylate) (PBA) 95
3.2.4 Synthesis of PF-b-PBA copolymers 97
3.2.5 Characterization 98
3.2.6 Fabrication of PF-b-PBA stretchable microporous templates 101
3.3 Results and Discussion 102
3.3.1 Synthesis and characterization of PF-b-PBA copolymers 102
3.3.2 Morphology of the studied polymer thin films 105
3.3.3 Effects of mechanical strain on the morphology of PF-b-PBA
thin films 107
3.3.4 Strain-dependent optical properties of the studied polymer thin
films 110
3.3.5 Morphology of the stretchable microporous templates 114
3.4 Summary 116
Table and Figure 118
References 141
4. High Performance Eco-Friendly Resistive Memory Devices using Biodegradable Polymers for Charge-Trapping Layer and Substrate 150
4.1 Background 150
4.2 Experimental Section 153
4.2.1 Materials 153
4.2.2 Preparation of PFN/PBS Blend Films using Different Coating
Processes 154
4.2.3 Resistive Memory Devices based on the PFN/PBS Blend Films 155
4.2.4 Fabrication of the Flexible Resistive Memory Device on Polymer
Substrate 156
4.2.5 Characterization 157
4.3 Results and Discussion 158
4.3.1 Thin Film Morphologies from Different Processing Techniques 158
4.3.2 Resistive Memory Device Characteristics 162
4.3.3 An Eco-friendly and Flexible Resistive Memory Device 167
4.4 Summary 168
Table and Figure 169
References 186
5. Conclusion and Future Works 194
Autobiography 201
Publication List 202
Appendix A 207
dc.language.isozh-TW
dc.subject可拉伸有機半導體元件zh_TW
dc.subject嵌段共聚物zh_TW
dc.subject高分子摻合體zh_TW
dc.subject可拉伸聚芴類高分子材料zh_TW
dc.subject彈性光電材料zh_TW
dc.subjectstretchable luminescent materialsen
dc.subjectstretchable organic electronicsen
dc.subjectstretchable polyfluorene materialsen
dc.subjectpolymer blendsen
dc.subjectblock copolymersen
dc.title拉伸性聚芴類材料之形態控制、光電特性與應用zh_TW
dc.titleMorphology, Optoelectronic Properties, and Applications of Stretchable Polyfluorene Based Materialsen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree博士
dc.contributor.author-orcid0000-0003-1060-1013
dc.contributor.oralexamcommittee廖英志(Ying-Chih Liao),闕居振(Chu-Chen Chueh),童世煌(Shih-Huang Tung),邱昱誠(Yu-Cheng Chiu),李文亞(Wen-Ya Lee)
dc.subject.keyword可拉伸有機半導體元件,彈性光電材料,可拉伸聚芴類高分子材料,高分子摻合體,嵌段共聚物,zh_TW
dc.subject.keywordstretchable organic electronics,stretchable luminescent materials,stretchable polyfluorene materials,polymer blends,block copolymers,en
dc.relation.page252
dc.identifier.doi10.6342/NTU202003630
dc.rights.note有償授權
dc.date.accepted2020-08-17
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
U0001-1608202022524400.pdf
  未授權公開取用
69.27 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved