請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66906完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳文章(Wen-Chang Chen) | |
| dc.contributor.author | Hui-Ching Hsieh | en |
| dc.contributor.author | 謝蕙璟 | zh_TW |
| dc.date.accessioned | 2021-06-17T01:14:34Z | - |
| dc.date.available | 2020-08-24 | |
| dc.date.copyright | 2020-08-24 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-17 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/66906 | - |
| dc.description.abstract | 穿戴式科技日新月異,新世代的有機半導體元件不僅整合醫療監測之功能,亦須能於高強度運動下,保有穩定之元件特性,為此可拉伸式半導體材料之開發備受矚目。為開發兼具高效能、環境穩定且高機械耐久性之可拉伸式有機半導體元件,主動層的半導體材料扮演至關重要的角色。相較於無機與有機小分子半導體材料,共軛高分子材料具備低生產成本、輕薄、高效能之光電性質以及潛在之薄膜延展性等優勢,更利於彈性半導體材料之發展。從材料設計方面,可經由物理性摻混或化學合成及修飾之方式,導入彈性且具有其他功能性之材料,進而透過材料相分離尺度與相形態結構之控制,提升材料之光電特性與機械強度,並且應用於各式電子元件。然而,至今為止,多數文獻所開發之彈性半導體材料皆應用在有機電晶體材料,極少數研究著墨於可拉伸式光電元件及記憶體元件。在此篇論文中,我們階段性以物理混摻與化學合成兩種方式設計與製備彈性光電材料,將具高效能藍光特性之聚芴類共軛高分子與多功能之柔性材料整合,並且有系統地探討拉伸過程對於材料相形態與光電特性之影響。研究內容分述於三個章節:第一章,我們將聚芴類共軛高分子材料以物理混摻導入橡膠,藉由材料間之物理性作用力抑制聚集形成,製備可拉伸之光電織布;第二章,我們透過化學合成技術,製備兼具高效能放光特性與彈性之嵌段共聚物材料,該材料能承載100%的拉伸形變;第三章,沿用該物理作用力,將共軛高分子材料與生物可降解之材料進行混摻,運用不同製程控制相分離維度以調控記憶體元件之特性,製備具可降解特性之可撓曲式有機記憶體元件。以上研究顯示,我們成功地展示並開發各種彈性聚芴類光電材料,這些材料於未來穿戴式電子元件之發展具有重要影響力。 | zh_TW |
| dc.description.abstract | The development of intrinsically deformable luminescent materials has generated increasing concern owing to their potential applications in wearable electronics. These materials with attractive benefits of lower production costs, light weight, efficient optoelectronic properties and potential film ductility are capable of maintaining good device performance under large mechanical strain. The exploration of relationships among the phase-separated structures, optoelectronic properties, and deformability provides an important insight for highly efficient, ambient stable, and mechanically durable semiconducting polymers. In this thesis, we progressively incorporate luminescent polyfluorene-based conjugated polymers with multifunctional elastomeric materials; furthermore, their strain-dependent morphologies and optoelectronic properties are systematically investigated. From these physical and chemical strategies, we successfully developed intrinsically deformable luminescent conjugated polymers with tunable structures and properties. These novel luminescent rubbery semiconductors are of great significance for future wearable optoelectronic devices. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T01:14:34Z (GMT). No. of bitstreams: 1 U0001-1608202022524400.pdf: 70928212 bytes, checksum: e31970e1defbf6362c4a3b3552c1c33a (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 誌謝 i 中文摘要 iii Abstract iv Table of Contents v List of Tables ix List of Figures x 1. Deformable Conjugated Polymers 1 1.1 Introduction of Conjugated Polymers 1 1.1.1 Chemical Structure and Properties 1 1.1.2 Device Applications 2 1.2 Stretchable Conjugated Polymers 5 1.2.1 Design Strategy of Intrinsically Stretchable Conjugated Polymers 6 1.2.1.1 Physical blending 6 1.2.1.2 Copolymerization 8 1.2.1.3 Side Chain Modification 10 1.2.2 Recent Progress on Intrinsically Stretchable Electronic Devices 10 1.3 Stretchable Polyfluorene Based Materials 14 1.3.1 Polyfluorenes 14 1.3.1.1 Introduction of Polyfluorenes 14 1.3.1.2 Synthesis of Polyfluorenes 15 1.3.1.3 Photophysical Properties of Polyfluorenes 17 1.3.1.4 Recent Progress on Optoelectronic Device Applications 18 1.3.2 Development and Applications of Stretchable Polyfluorene Based Materials 20 1.4 Research Objectives 22 Table and Figure 25 References 40 2. Stretchable Fluorescent Polyfluorene/Acrylonitrile Butadiene Rubber Blend Electrospun Fibers through Physical Interaction and Geometrical Confinement 50 2.1 Background 50 2.2 Experimental Section 53 2.2.1 Materials 53 2.2.2 Preparation of PFN/elastomer blend electrospun nanofibers 54 2.2.3 Spin-coated film 55 2.2.4 Characterization 55 2.3 Results and Discussion 56 2.3.1 Characterization and influence of the physical interaction between PFN and elastomer 56 2.3.2 Morphology of the PFN/elastomer blend electrospun fibers 59 2.3.3 Optical properties of the PFN/elastomer electrospun fibers and corresponding thin films 61 2.3.4 Strain-dependent optical properties of the PFN/NBR-7 fiber mat film 63 2.4 Summary 65 Table and Figure 67 References 81 3. Unraveling the Stress Effects on the Optical Properties of Stretchable Rod-Coil Polyfluorene-Poly(n-butyl acrylate) Block Copolymer Thin Films 88 3.1 Background 88 3.2 Experimental Section 92 3.2.1 Materials 92 3.2.2 Synthesis of ethynyl end-functionalized polyfluorene (PF) 93 3.2.3 Synthesis of azido-terminated poly(n-butyl acrylate) (PBA) 95 3.2.4 Synthesis of PF-b-PBA copolymers 97 3.2.5 Characterization 98 3.2.6 Fabrication of PF-b-PBA stretchable microporous templates 101 3.3 Results and Discussion 102 3.3.1 Synthesis and characterization of PF-b-PBA copolymers 102 3.3.2 Morphology of the studied polymer thin films 105 3.3.3 Effects of mechanical strain on the morphology of PF-b-PBA thin films 107 3.3.4 Strain-dependent optical properties of the studied polymer thin films 110 3.3.5 Morphology of the stretchable microporous templates 114 3.4 Summary 116 Table and Figure 118 References 141 4. High Performance Eco-Friendly Resistive Memory Devices using Biodegradable Polymers for Charge-Trapping Layer and Substrate 150 4.1 Background 150 4.2 Experimental Section 153 4.2.1 Materials 153 4.2.2 Preparation of PFN/PBS Blend Films using Different Coating Processes 154 4.2.3 Resistive Memory Devices based on the PFN/PBS Blend Films 155 4.2.4 Fabrication of the Flexible Resistive Memory Device on Polymer Substrate 156 4.2.5 Characterization 157 4.3 Results and Discussion 158 4.3.1 Thin Film Morphologies from Different Processing Techniques 158 4.3.2 Resistive Memory Device Characteristics 162 4.3.3 An Eco-friendly and Flexible Resistive Memory Device 167 4.4 Summary 168 Table and Figure 169 References 186 5. Conclusion and Future Works 194 Autobiography 201 Publication List 202 Appendix A 207 | |
| dc.language.iso | zh-TW | |
| dc.subject | 可拉伸有機半導體元件 | zh_TW |
| dc.subject | 嵌段共聚物 | zh_TW |
| dc.subject | 高分子摻合體 | zh_TW |
| dc.subject | 可拉伸聚芴類高分子材料 | zh_TW |
| dc.subject | 彈性光電材料 | zh_TW |
| dc.subject | stretchable luminescent materials | en |
| dc.subject | stretchable organic electronics | en |
| dc.subject | stretchable polyfluorene materials | en |
| dc.subject | polymer blends | en |
| dc.subject | block copolymers | en |
| dc.title | 拉伸性聚芴類材料之形態控制、光電特性與應用 | zh_TW |
| dc.title | Morphology, Optoelectronic Properties, and Applications of Stretchable Polyfluorene Based Materials | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.author-orcid | 0000-0003-1060-1013 | |
| dc.contributor.oralexamcommittee | 廖英志(Ying-Chih Liao),闕居振(Chu-Chen Chueh),童世煌(Shih-Huang Tung),邱昱誠(Yu-Cheng Chiu),李文亞(Wen-Ya Lee) | |
| dc.subject.keyword | 可拉伸有機半導體元件,彈性光電材料,可拉伸聚芴類高分子材料,高分子摻合體,嵌段共聚物, | zh_TW |
| dc.subject.keyword | stretchable organic electronics,stretchable luminescent materials,stretchable polyfluorene materials,polymer blends,block copolymers, | en |
| dc.relation.page | 252 | |
| dc.identifier.doi | 10.6342/NTU202003630 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-17 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1608202022524400.pdf 未授權公開取用 | 69.27 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
